
-RIO? 099 RECOVERY USING VIRTUAL NENORY(U) NISSACHUSETTS INST OF 1/1
TECH CMURIDGE LAS FOR COMPUTER SCIENCE E KC COLOONER

IJUL 67 NIT/LCS/TR-404 NSI4-3-K-0125

7UNCLRSSIFIED F/O 1216 U

Wi 1 EEMS~h~i
Ehhmmhhmhonh

Eonh somonsoonm
EMMhhhhMhhhhlM
EhhhhmhEEEEmhI
mosshEEohhEmoI
EoshEmhohmhhhI

f~1.0 ;IU

Igo 1 2.0

1. 511111 1.4

w - - w - IIII t

1111 .2 I~~ 14. _____%

00

cn

MIT/LCS/FR-404

co

RECOVERY USING
VIRTUAL MEMORY

Elliot K. Kolodner

July 1987

NOV 1 81987

I

a.-..

Unc lassified"
ECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb RESTR!C

T IVE MARKINCS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3 DiSTR!6,,i.CAO. A, ,AI.A : ' - ..

2b DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public rc] ,.sc; r] iit

is unlimited.

4. PERFORMING ORGANIZyON REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NuMBER(S) ,' d,.

MIT/LCS/TR-404 N00014-83-K-0125

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL /a NAME OF MONITORING ORGANIZATION
MIT Laboratory for Computer (Ir applicable) Office of Naval Research/Department of Navy

Science

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

545 Technology Square Information Systems Program

Cambridge, MA 02139 Arlington, VA 22217

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

DARPA/DOD .

8c. ADDRESS(Oty, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22217 ELEMENT NO NO. NO ACCESSION NO

11 TITLE (Include Security Classification)

Recovery Using Virtual Memory

12 PERSONAL AUTHOR(S)

Kolodner, Elliot K.

13a TYPE OF REPORT 113b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
Technical FROM To 1987 July 91

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) V.%

FIELD GROUP SUB-GROUP atomic actions, recovery, garbage collection, virtual

memory, persistent storage, stable storage, distributed

systems

19 ABSTRACT (Continue on reverse of necessary and identify by block number)

r Maintaining the consistency of long-lived on-line data in the presence of failures

is important for many applications such as airline reservation and banking systems. After e.

a crash, the long-lived data must be recovered for the application to continue running.

Storing the data and later restoring it is the job of a recovery system. This thesis pre- __

sents a new recovery method with two features: it is fast because as much as possible it

uses data already stored by an application in virtual memory for recovery, and it is novel

because it allows data in virtual memory to be organized in a heap with automatic garbage ..-

collection. The recovery method is designed to be used in the Argus system, but it will

also work for other persistent storage systems. .,.,

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
E- UNCLASSIFIED/UNLIMITED C0 SAME AS RPT C5 DTIC USERS Unclassi fied

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Jludv Little. Publications Coordinator (617) 253-5894

DO FORM 1473, 84 MAR 83 APR edtion may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

*U.$ Oe,.mi ftmitig, Off1in 4 4S-.4

Unclissi t ied

% %

% % .&K% '. % 1-K..

Recovery Using Virtual Memory

by

Elliot K. Kolodner

June 1987

%. %

) Massachusetts Institute of Technology 1987

This research was supported in part by the Advanced Research Projects Agency of the
Department of Defense, monitored by the Office of Naval Research under contract N00014-
83-K-0125, and in part by the National Science Foundation under grant DCR-8503662.

Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, Massachusetts 02139

p.- ,

-: : .:': : -':' ,:Z:- '':".-' '' -', -""4 - '-'"'"". "'": ,' .''" "--.'.'. ." "": ". -""2" 'z" -.''"-.-:"" -'' """- -0'

Recovery Using Virtual Memory

by

Elliot K. Kolodner

IS.

Abstract

Maintaining the consistency of long-lived on-line data in the presence of failures is
important for many applications such as airline reservation and banking systems. After
a crash, the long-lived data must be recovered for the application to continue running.
Storing the data and later restoring it is the job of a recovery system. This thesis presents
a new recovery method with two features: it is fast because as much as possible it uses data .
already stored by an application in virtual memory for recovery, and it is novel because it '." '
allows data in virtual memory to be organized in a heap with automatic garbage collection.
The recovery method is designed to be used in the Argus system, but it will also work for
other persistent storage systems.

This report is a minor revision of a thesis of the same title submitted to the Department of
Electrical Engineering and Computer Science on May 8, 1987 in partial fulfillment of the N
requirements for the Degree of Master of Science.

Thesis Supervisor: Barbara H. Liskov

Title: Nippon Electric Company Professor of Software Science and Engineering

Keywords: atomic actions, recovery, garbage collection, virtual memory, persistent storage,
stable storage, distributed systems

2

d". '

Acknowledgments

I would like to thank my thesis advisor, Barbara Liskov, for listening to my ideas and

helping me to organize and edit this thesis.

I would also like to thank all of the members of the Programming Methodology Group,

past and present, who discussed various aspects of the research with me: Dorothy Curtis,

Mark Day, Debbie Hwang, Paul Johnson, Rivka Ladin, Gary Leavens, Brian Oki, Sharon

Perl, Bob Scheifler, and William Weihl.
Finally, I thank my family and my wife, Elana, for providing support and encourage-

ment.

71

ft.

3 :

A " -A. --..- -.

DTtC TAB
Ujifitinounoed
3u:;tiricatlo

AvfIX),t t ccde9 S

Contents NP~.

1 Introduction 7
1.1 Related Work 9

1.1.1 The Current Argus Recovery System. 9
1.1.2 Other Recovery Systems 10

1.2 Overview. 12

2 Argus 13
2.1 Argus Programming Language and System 13
2.2 Tr~ansaction Processing and Two-Phase Commit 15
2.3 Assumptions About Argus 18

3 Atomic Garbage Collection 21
3.1 Background and Assumptions. 22
3.2 Outline of Steps for Atomic Garbage Collection 23

3.3 Copying Garbage Collection. 24
3.4 Crashes 25
3.5 Making Copying Garbage Collection Atomic 27
3.6 Atomic Copying Garbage Collection. 30

3.6.1 Copying Step 30
3.6.2 The Algorithm. 32

3.7 Crash Recovery 33
3.8 Evaluation of the Algorithm. 376

4 Recovery Using Virtual Memory 41

4.1 Representation of Built-in Atomic Objects 41
4.2 The Log 42

4.2.1 References to Resilient Objects. 43
4.2.2 Copying an Object 43
4.2.3 Log Records and Writing to the Log. 44

4.3 Checkpoints. 46
4.3.1 Work Saved by a Checkpoint. 47
4.3.2 Installing a Checkpoint. 5
4.3.3 Quiescence 51

4.4 Updating Object Headers. 52

4

6%

4.5 Scenarios: Restoring Built-in Atomic Objects 53
4.6 Garbage Collection 56
4.7 Recovery of Built-in Atomic Objects 58
4.8 Recovery of Mutex Objects. 65

4.8.1 Representation of Mutex Objects. 65
4.8.2 Writing Mutex Objects to the Log 65
4.8.3 Recovery of Mutex Objects 67

4.9 Housekeeping the Log. 69

5 Alternatives 71
5.1 Cheaper Checkpoints 71
5.2 Less Storage for Mutexes. 72
5.3 Locating and Identifying Stable Objects 73

5.3.1 Keeping a Map in Virtual Memory 74
5.3.2 Implementation of the AOM. 75
5.3.3 Recovering the AOM. 77
5.3.4 Recovery of Mutexes. 77
5.3.5 Comparison With First Solution 79

5.4 Garbage Collection. 81

6Conclusions 82
6.1 Changes to Argus. 83

612Mutexes 84
62Comparison With Current Recovery System. 85
6.3FutreWork. 87%

5

% .

List of Figures

3.1 Example of Copying Garbage Collection 26 O

3.2 Lost Object Descriptor. 27
3.3 Lost Forwarding Pointer 28
3.4 Sub-steps of the Copying Step of the Atomic Algorithm 31
3.5 Recovery Example 38

4.1 Built-in Atomic Object. 42 r'
4.2 Format of Log Entries. 45
4.3 Format of Checkpoint Object 47
4.4 Updating an Object Header at Commit 52
4.5 Restoring Built-in Atomic Objects: Case 1 54
4.6 Restoring Built-in Atomic Objects: Case 2 54
4.7 Restoring Built-in Atomic Objects: Case 3 55
4.8 Restoring built-in Atomic Objects: Case 4 55v
4.9 Restoring Built-in Atomic Objects: Case 5 56
4.10 Restoring Built-in Atomic Objects: Case 6 56 .

4.11 Mutex Object 65 ('
4.12 Format of Mutex Record. 66

5.1 Representation of the AOM. 76

6

'V P% %

de e'.

.

Chapter 1

Introduction

Maintaining the consistency of long-lived on-line data in the presence of failures is

important for many applications such as airline reservation and banking systems. For

example, account information for a banking system must not be lost even if the computer

storing it crashes. After a crash, the account information must be recovered for the banking

system to continue running. Storing this information and later restoring it is the job of a

recovery system. This thesis presents a new recovery method with two features: it is fast

because as much as possible it uses data already stored by a program in virtual memory for

recovery, and it allows data in virtual memory to be organized in a heap with automatic

garbage collection. The recovery method is designed to be used in the Argus system[16,17],

but it will also work for other systems that organize resilient data in a garbage-collected

heap.
Argus programs run as atomic actions. Actions mask failures that may occur while they

are running. An action either completes entirely and commits, or it is guaranteed to have

no effect and aborts. A crash or other failure before an action commits forces it to abort.

Therefore, the recovery system only needs to save and restore the effects of committed

actions.

When an Argus program runs, its data is stored in virtual memory. Virtual memory

contains volatile storage and it alone is not sufficient to support recovery. A way of ensuring

that data survives crashes is to write it to a stable storage device. A stable storage device

avoids the loss of information despite failure with very high probability. Stable storage can

be organized as a log of completed actions with writing to one end. To recover, the log is

7

% %% %.%

read backwards until all data has been restored to virtual memory. A previous recovery '

system for Argus[21,22] does all recovery from the log assuming that all of virtual memory

is lost in a crash. The problem with this approach is that recovery is slow. The amount of".

processing is proportional to the number of committed actions, which grows without bound. .

Recovery time can be shortened by periodically rewritting the log to remove information

about old actions whose effects have already been overwritten by newer ones. However,.

this rewritting is an expensive process and can only be done rarely. Therefore, the log is i!

typically quite long. .'.I -

This thesis investigates an approach to recovery based on the assumption that most of

virtual memory survives crashes. In particular, the approach distinguishes between hard..,

and soft crashes. Virtual memory uses main memory as a cache for the slower backing store.".-

Usually main memory is semi-conductor and is volatile, whereas the backing store is on disk .'

and is non-volatile. A hard crash is a crash in which both components of virtual memory are : .

corrupted. The old recovery method must be used for a hard crash. A soft crash is a crash .ii

in which the volatile main memory is lost or corrupted, but the non-volatile backing store ..

survives uncorrupted. After a soft crash, the new recovery method reconstructs the data in

virtual memory by using the surviving backing store and reading just enough of the log to,-.

restore the part of the virtual memory that was not written to disk recently. The amount .

of log that needs to be read can be kept small by periodic checkpoints. A checkpoint is "'-
taken by flushing all dirty pages of the main memory to the backing store. (A page of eain

memory is dirty if it has not been written to the backing store since it was last modified.)

Checkpoints can be taken frequently because they are relatively inexpensive.

Virtual memory is organized in Argus as a heap of objects using dynamic memory
allocation and garbage collection. Such an organization is desirablo Te it eases the

job of programming by freeing the programmer from concerns about storage management.

However t case se e b periodicalery. First, objects move when the heap is
compacted. Enough information must be available after a crash to find objects on the

surviving backing store. Second, a crash might occur during garbage collection. A garbage

collection algorithm is presented that allows the resilient data to be recovered from the fbacking store even if a crash occurs during garbage collection. bkgo ins

8 aeabv

corrpte.% The old recovery method must be used f a hard crash. A % % a is a crash

This thesis proposes a method for recovery using both virtual memory and a log after

a soft crash. The method is faster than using a log alone. The scheme is novel be-ause it

allows virtual memory to be organized as a heap.

1.1 Related Work

A major point of difference between Argus and other transaction systems is the approach

taken to storage management. Other systems require explicit system calls to create, modify

or delete resilient data (data that needs to survive crashes). They do not use garbage

collection. Argus is unique among transaction systems in that it integrates resilient data

into the fabric of a programming language and allows objects to become or cease being

resilient implicitly. An Argus programmer divides data between stable state and volatile

state; only the stable state is resilient. The stable state consists of all objects accessible

from a stable root. Inter-object references can change dynamically under program control,

and objects enter and leave the stable state implicitly. Furthermore programmers never

deallocate storage explicitly; storage is reclaimed and compacted using garbage collection.

Thus, a recovery method designed for Argus is responsible for determining which objects

are stable and need to be written to stable storage. If the method recovers using virtual

memory, it must also be able to find objects in virtual memory after a crash and recover

from a crash occurring in the middle of garbage collection.

1.1.1 The Current Argus Recovery System

The recovery system closest to the one described in this thesis is the current Argus

recovery system designed by Oki[21,22]. Both systems organize stable storage as a log. The
organization of the log, the method for detecting what objects need to be written to the log,"

the method for writing to the log and the method for processing the log after a crash are

similar. However, the current recovery system assumes that all crashes are hard crashes.

After every crash, it discards virtual memory and reads the entire log on stable storage to -

restore the resilient data to a fresh copy of virtual memory. A goal in the design of the -".

current recovery system was that it be implementable for the Argus prototype[181. Recovery

using virtual memory requires changes to the operating system that the implementers of the .

4%

9 1.%.,

% ? .?/.S
;~~ ~ %. % . . . q "r ""'L. " "dt' ' ' " ' W ."P's % "l

r " " " " " " " " " " " " ° " o " " " " "
. . . ''

prototype wanted to avoid. A more extensive comparison between the two systerli, a1,j,, ar

in chapter 6.

1.1.2 Other Recovery Systems

Like the recovery scheme presented in this thesis, recovery methods for other transaction

systems also differentiate between hard and soft crashes, and provide fast recovery for soft

crashes. These systems usually use one of two main methods for recovery: shadows or write-

ahead logging. First the recovery method proposed in this thesis for Argus is compared

with recovery in System R[91, a relational database system developed at IBM that uses

shadows. Then it is compared with recovery in TABS[7,23,24], a distributed transaction

system developed at CMU that uses write-ahead logging.

System R

System R maintains its data in a file system and not in virtual memory. A hard crash

is called a media failure and refers to a corruption of the file system. A soft crash is called

system restart and refers to a crash in which the file system survives uncorrupted.

System R uses a combination of a shadowing mechanism and a log to implement recovery.

A shadow page and a current page are maintained for each active file page. Modifications

are made to the current page and recorded in the log so that they can be undone or redone

for transaction abort and recovery. Because the unit of locking (record) is not the same as

the unit of recovery (file page) in System R, each modification to a file has to be recorded

in the log to allow concurrent transactions to update the same file. At regular intervals

checkpoints are taken to shorten the portion of the log that must be processed after a crash

and reclaim the disk storage used by shadows for active pages. At a checkpoint pages in

volatile store are flushed to their current pages and each current page replaces its paired Ushadow page.

After implementing the system, the designers of System R argued that they should have

used a write-ahead log instead of shadows. A write-ahead log would have allowed the system

to update file pages in place and reduced storage requirements. Using shadows did not save
writing to the log; even using shadows, every modification to a file page had to be recorded

10

t % "%"

llk • I 1 . 1111%1 q-j +j +% "m lxlll~ m . l~l J. II m' 'lv l'l . ro I '."- - -I+ .".' '. '- ,,"+ +'+ *',J '- +' .""" '"" '''" "%

in the log. Using shadows also required an extra level of indirection in the file system-a

map pointing to the pages of the file. The indirection meant greater access time for both

random and sequential access. The indirection also made taking a checkpoint expensive

because the maps had to be updated and storage had to be freed at every checkpoint.

The recovery method presented in this thesis uses a shadowing mechanism without

incurring the extra writing to the log and the overhead for checkpoints. This is because it

uses shadows for logical entities (objects) and not physical entities (pages). Thus, it does

not have to record every modification to an object in the log. Instead it only needs to record

an object version in the log when an action that modified the object commits. It also does

not have to wait until a checkpoint to replace shadow versions by current versions. It does

the replacement at action commit for each object modified by the committing action. Thus,

checkpoints are a lot cheaper; they only involve flushing the dirty pages of the volatile store

(main memory) to the non-volatile store (backing store).

TABS

TABS uses virtual memory to recover. The data server is the basic unit of computation

in TABS. A data server encapsulates data and provides operations on that data. A data

server's recoverable data resides in a disk file called a recoverable segment that is mapped

into the server's virtual address space. A soft crash in TABS is called a node failure. A

hard crash is called a media failure.

TABS uses a write-ahead log to implement recovery. The TABS server library provides

routines to manipulate objects in the recoverable segment. To modify an object the server

calls routines to obtain a write lock on the object, write the object to the log and pin the

object in main memory. The write-ahead log protocol requires that the object be pinned

in main memory (i.e., not written to the backing store) until the version is physically in

the log. Before the transaction modifying the object commits, a routine has to be called

to write the modified version to the log. The write-ahead log protocol requires that the

modified versions of all objects updated by a transaction be physically in the log before the

transaction commits.

Shadows are more appropriate for an Argus recovery system than a write-ahead log.

11

UI

... -. .:.. -- -....- :-

'I~w iff Jr vJr ~' ~'.-s--. ~ m - 10 rP u ' w' w w w rw -i w iw-vLv-V

First, maintaining object versions in virtual memory simplifies the implementation of nested

actions and allows actions to be aborted quickly.

Second, using a write-ahead log to allow update in place would require more writing to a
the log than what is required for shadows. As mentioned earlier, an Argus heap contains
both volatile and stable objects. Using a write-ahead log, modifications to all objects

whether volatile or stable would have to be recorded in the log to allow recovery from

transaction abort. With shadows, an object is recorded in the log only when it is stable and I

an action that has modified it commits. Also, recording an object in the log involves more

than just writing a physical copy of the object to the log. References to contained objects

have to be changed from virtual memory references to references that still have meaning

after garbage collection or a hard crash.

Lastly, some types of Argus objects are dynamic and can grow (or shrink) in size. Update

in place does not work well for objects that grow in size. The indirection provided by the

shadowing mechanism is appropriate for objects that grow dynamically.

1.2 Overview

Chapter 2 presents an overview of Argus highlighting those aspects that affect the re-

covery system. Chapter 3 presents an algorithm for garbage collection that allows recovery . •

using virtual memory even if a crash occurs in the middle of garbage collection. Chapter 4

presents a method for recovery using virtual memory. Chapter 5 presents several optimiza-

tions to the recovery scheme, an alternative for recovery that uses a different method to find e

objects in virtual memory after a crash, and an alternative for atomic garbage collection. N

Finally chapter 6 concludes with a summary of the thesis, an evaluation of the scheme for

recovery, and a discussion of future work.

12.1

S% % % "%

.6-- .-

Ze%° &*

- VIV VV '.M UT '.,W -- . uw LrWVW uWW 1WIMVIW VW.VVW W -. VV UW ,JVVW VW rW VVV lwwIW- j wj v.w g

Chapter 2

Argus

This chapter provides details about Argus necessary to understand the design of the

recovery system. The first section discusses the programming language and system. The

next section discusses action processing. Finally the last section discusses several assump-

* tions about the Argus implementation and restrictions on the language that are required

"' by the recovery method.

2.1 Argus Programming Language and System

The Argus[16,17] language and system allows a programmer to write programs that

will execute on a distributed network of computers. The nodes of the network are inde-

pendent computers each consisting of one or more processors with local memory and input

output devices. Nodes may communicate with each other only by sending messages over

the network.

The guardian is the basic module of an Argus program; a guardian is an abstraction I
of a processor and its memory. Each guardian resides at a single node, although a single

node can support several guardians. A guardian encapsulates (or guards) long-lived resilient

data and a set of processes that can operate on that data. Access to the guardian's data

is granted only through operations, called handlers, which are defined in the body of the

guardian definition. A guardian may also have background processes that operate on its

data. An Argus program is a collection of guardians that communicate with each other

through handler calls.
A guardian's state is divided into stable and volatile components. In a guardian definition

13

% ' " % °% % % % "% " .% % % % " " "" % "". .% " " ? % .% % .. "

KV

LVVV q.' VV UX' l li M R~~U EF WWWJ W% WVWV V wjUY WV7 rFX r v". . - - v

the programmer declares certain variables to be stable. A guardian's stable variables are

collected into a single object called the stable root. The stable state is identified as all objects

accessible from the stable root; those objects are called accessible. The stable root is created

and initialized when the guardian is created and its stable variables are initialized. When a

guardian crashes, its stable state survives, whereas its volatile state and processes are lost.

When a guardian recovers from a crash, its stable state must be reconstructed before it

resumes receiving handler calls and running its background processes.

Atomic actions are used to structure computation in an Argus program. Actions are

serializable and total. Serializability means that when actions are executed concurrently,

the effect will be as if they were run sequentially in some order. Totality means that an

action is all or nothing, i.e., it completes entirely or is guaranteed to have no effect.

An action is initiated at one guardian and can spread to other guardians through handler

calls. Totality requires that when an action completes, it either commits at every guardian

that participated in the action or aborts at every participating guardian. If an action

commits, all of its changes to the stable state are installed and become visible to other

actions; if it aborts, all of its changes are discarded. Two-phase commitgi (discussed

below) is used to ensure totality.

Atomicity of actions is ensured through atomic objects. Actions are guaranteed to be

atomic only if all of the data they share with other actions are atomic objects. Argus

provides built-in atomic objects and user-defined atomic objects. There are two kinds of

built-in atomic objects: immutable and mutable. Immutable built-in objects are atomic

because their values never change. The values of mutable built-in atomic objects and user-

defined atomic objects can change and the Argus system provides mechanisms to ensure

that the changes are atomic.

For the mutable built-in atomic objects, read and write locks are used together with

versions and a strict two-phase locking discipline to insure serializability and totality. To

use a built-in atomic object, an action invokes one of the object's operations. The action

acquires a lock on the object in the mode appropriate to the operation and holds the lock

until it commits or aborts. When a write lock is first obtained for an action, a copy of

the object is made in volatile memory and the action operates on this copy, which is called

14

" -- -. . .. " "
"-J- . "

U-.ITm

the current version. The previous version, called the base version, is also retained. If the

action commits, the current version becomes the base version, a copy of the current version

is written to stable storage if the object is accessible, and the old base version is discarded. .

If the action aborts, the current version is discarded. 0'

User-defined atomic objects allow greater concurrency than that achievable with built-A

in ones. They are constructed using mutez objects, which are containers for objects of

arbitrary type. Mutex is a type generator that provides for mutual exclusion and recovery.

A program uses the seize statement to obtain exclusive access to a mutex object. A program

can cause an accessible mutex object to be written to stable storage by calling changed, an

operation of the mutex type generator. Currently Argus guarantees two properties for the

changed operation:

1. When changed is called from within an action, the object contained in the mutex will
be written to stable storage after the call, but before the action commits.

2. If changed is called by an action for several mutexes at a single guardian, either all of
the mutex versions written to stable storage on behalf of the action will be recovered
after a crash or none of them will.

To insure the consistency of the mutex version written to stable storage, the recovery system

seizes the mutex object to gain exclusive access to it while it is being written[17,26].

Actions in Argus are nested, so that there are both topaction8, which are not nested,

and 8ubactions, which are. In particular, handler calls run as subactions of the calling

action. Subactions require extensions to the locking and version management rules given

above. However, these extensions are not significant to the recovery system. The recovery

system carries out two-phase commit and writes to stable storage only for the commit of

a topaction. When a topaction commits, only two versions exist for each modified object:

the base version, and the current version that records all the changes made to the object

by the action and its descendants. Therefore, nested actions are ignored in the remainder

of this thesis.

2.2 Transaction Processing and Two-Phase Commit

As an action executes, it reads and modifies atomic objects at several guardians. Each

guardian keeps track of the use made of its local objects. In particular, for every action that

15

SN N %, ,, .%.. .V .

-Z
. %''.

-5

visits a guardian, the guardian maintains a set of local objects that the action has modified.

This set is called the Modified Object Set (MOS). A built-in atomic object is inserted in

the MOS by the system when a write lock is obtained on it; a mutex is inserted when the

program calls the changed operation on it. A separate MOS is maintained for each action

that has visited the guardian and has not yet committed or aborted.

The recovery system needs a way of determining which objects in the MOS are accessible

and need to be written to stable storage. It maintains, for each guardian, an Accessibility

Set (AS) of resilient objects accessible from the guardian's stable variables. The AS is

implemented by a single bit in each resilient object; the recovery system checks the bit to

determine whether a resilient object in the MOS needs to be written to stable storage.

Maintaining the AS requires procedures for: initialization, determining when an object.-:

is newly accessible and must be inserted in the AS, and determining when an object is no

longer accessible. The AS is initialized when a guardian is created by traversing the graph of

objects accessible from the stable variables. Objects can become accessible only as a result

of a modification to an object that was previously accessible. Thus, newly accessible objects

are detected and inserted in the AS by examining the objects written to stable storage when

an action commits (including the newly accessible objects themselves). Determining when

an object is no longer accessible can only be accomplished by a full traversal of the stable

state. This is done as part of garbage collection. Note that the AS is actually a superset of

the objects that are accessible.

When an action completes, the system makes sure that it commits at every guardian

it visited or that it aborts at every guardian. If the action commits, its changes to the

stable state are made permanent by recording them on stable storage. The standard two-

phase commit protocol[9] is used for this purpose. The guardian where an action originates

is called the coordinator; the guardians visited through handler calls are the participants.

A brief description of the protocol follows. There are two phases at the coordinator and

two phases at participants. An action for which the first phase at a participant has been

completed is called prepared at that participant. All messages sent during the protocol

contain a system-wide unique action identifier identifying the action for which the protocol
is being carried out.

167
,.. . * ~ '*S -. ~ ~ -. S - *". . .--

%. .. *
r:~~~ ~ o"% % % %-",. " %" "# ""'. " '.,,."."--'''..""2 ° , r ,'"."''"..#' "',"", 3'%''. - ' ' ' '

7"." -.,"-' -"- ---' -' """," "' ','." e " " '"- "- ". -"''" °" " ." '. ,.' "- .''2- - '-3",'.''-'" "' --.'' ' -''-" ' "-'' - '-"e -" '.

At the Coordinator

Preparing Phase The coordinator sends a prepare message to each participant in the a,

action (including itself). Then the coordinator waits for replies. If each participant %
replies with the prepared message, the coordinator enters the committing phase. If %

any participant replies with the aborted message, then the action is aborted. In that
case, the coordinator sends the abort message to each participant. The coordinator
can decide unilaterally at any time during the preparing phase to abort, e.g., if it does
not receive responses from all participants even after retransmission has been tried.

Committing Phase If the coordinator has received a prepared message from each par-
ticipant, it enters the committing phase. First the committing record containing the J.
guardian identifiers of the participants is written to stable storage. This is the point
at which the action has committed. Then the coordinator sends committing messages
to each of the participants and waits for replies. When the committed message has -.
been received from each of the participants, the coordinator writes the done record to r
stable storage and the protocol is complete.

At a Participant

Prepare Phase When a participant receives the prepare message from the coordinator, it
begins its prepare phase. If the action is unknown at the participant (a crash might
have occurred between the handler call and two-phase commit), it replies to the
coordinator with the aborted message. Otherwise, the action prepares. The current
versions of all stable objects modified by the action (all objects listed in the MOS
that are also in the AS), the base versions of all objects made newly accessible by the
action, and the current versions of all newly accessible objects that are in the MOS
of another prepared action are written to stable storage. Then all read locks held
by the action are released and a prepared record is written to stable storage. Then
the participant sends the coordinator the prepared message and enters the completion
phase.

Completion Phase In the completion phase, the participant waits for the coordinator to
send a commit or abort message. If the participant receives the commit message, it
writes the committed record to stable storage, releases write locks and replaces base
versions with current versions for built-in atomic objects, and sends the committed
message to the coordinator. If the participant receives the abort message, it writes the
aborted record to stable storage, and releases write locks and discards current versions
for built-in atomic objects. If the participant has not received a message from its
coordinator, it can send a query message to the coordinator to find out the action's
outcome.

17

,"" " ,"
%*~~~ 'k -A 'a , .* '' .5 -

U W 'U W 4 ~ W V 5 . v u -V W -V v W w w- - 4

2.3 Assumptions About Argus I4.

Several assumptions are made in this thesis about the hardware and operating system -.

of the machine for which the recovery system is being designed, and about the Argus 0e%

implementation.

The design is for a standard architecture, a general purpose register machine with virtual

memory (e.g., a VAX'). No special purpose hardware to support the recovery system or

garbage collection is assumed.

The disks used for the backing store for virtual memory use error correcting or redun-

dancy codes and can detect disk blocks that are bad or whose information was garbled since

the last write. This means that hard crashes are detectable.

Soft crashes occur as a result of a software (for example, inconsistent data structures

in the operating system) or hardware (for example, power failures) failure at a guardian's

node. For a soft crash, it is assumed that a guardian crashes before bad information is

written to its backing store.

There is no special hardware available for stable storage; stable storage is implemented r

by mirrored disks[14,13], and reading and writing stable storage is more expensive than

ordinary reading or writing from a disk. It is important that writing to stable storage

be fast to keep the cost of two-phase commit low. Sequential access to a disk is cheaper .i

than random access. Because records are appended sequentially to a log, a log is a suitable

organization for stable storage. If a different implementation of stable storage were available,

other organizations for the information on stable storage could be considered. I
The operating system provides support for Argus and recovery using virtual memory. In

most operating systems the backing store on disk for virtual memory is considered volatile

and does not survive crashes. To support recovery using virtual memory, the operating

system will have to manage backing storage on disk similar to the way that storage for files

is managed. The operating system will also have to provide primitives for virtual memory

that allow control over paging. This assumption is discussed further in chapter 3.

Each guardian has its own virtual address space that is shared by the guardian's pro-

cesses. This is the way Argus is currently implemented[181 and is a motivation for recovery

'VAX is a trademark of Digital Equipment Corporation

18?

0
• ' - - , ,% .°' " .a.-"% " ' ".'.'V° %"• ' .% % % ' '% .' ' ' ' ' ' ' ' ' ". -. 0.%

". % " ..' . ° " % ' . "% % . . .° - . ., . ." " , """% "'•" °•' - •'• , "-
°

. .%

using virtual memory.

At every node, there is a special privileged guardian called the guardian manager. The

guardian manager is responsible for creating new guardians at the nod,, keeping track of the

resources used by guardians at the node, such as stable storage, and restarting guardians

after a crash. For recovery using virtual memory, the guardian manager keeps track of disk "

storage used by guardians at the node for backing store and the mapping between virtual

memory blocks and backing store disk blocks.

Two changes to the Argus language are assumed. The first change restricts the types of

the stable variables. The type of a stable variable must be a type that can be guaranteed

to be resilient. The resilience of an Argus type can be guaranteed if its representation is

1. a built-in atomic type, I

2. an instance of a built-in atomic type generator instantiated by a resilient type, or

3. an instance of a mutex type generator instantiated by any type, or

4. a user-defined type whose representation is ultimately one of the above.

These types are called resilient types, and an object whose type is resilient is called a resilient

object. Resilience for objects of these types can be guaranteed because modifications to the

objects are coordinated with the recovery system. This restriction means that an object

of a non-atomic mutable type (for example, an array) can become accessible only if it is

enclosed in a mu~ex. Because Argus is a statically typed language, this restriction can be

enforced by type checking at compile and configuration time. (Configuration is a step in the

creation of executable code for a guardian between compilation and linking during which

implementations are chosen for each of the modules making up a guardian.)

The second change simplifies the recovery semantics for mutex. The all or none property

cited earlier for the recovery of mutexes is dropped from the language. This property

required that if changed is called by an action for several mutexes at a single guardian,

either all of the mutex versions written to stable storage on behalf of that action will be

recovered after a crash or none of them will. Instead, the recovery system guarantees that

all of the mutex versions will be recovered only if the action commits. If the action does

not commit, some of the mutex versions may be recovered while others will not.

19

..

% %

I.

The designers of Argus included the all or none property to give programmers more

expressive power when writing implementations for user defined atomic types. However,

in practice it is difficult to make use of this property, and the property has not yet been

used. By dropping the property from the language, recovery for mutexes is simpler and

more efficient.

These changes are discussed further in chapter 6.

-:.°

..

%

0

20

-

-4%

6"

- .V

20 -

4.,

Chapter 3

Atomic Garbage Collection

Garbage collection is one of the main problems that needs to be to solved in order to

make recovery using virtual memory possible.

Before the advent of virtual memory, the purpose of garbage collection was to reclaim

storage in the heap no longer being used by a program. In virtual memory systems, garbage

collection acquired the added purpose of improving paging performance. Paging perfor-

mance is usually improved by compacting the storage being used in order to achieve a

higher density of useful objects per page.

Compaction changes memory - objects are moved and pointers to objects are updated

to reflect the moves. Mo . methods for reclaiming storage also modify objects in an effort

to reduce the amount of additional storage needed to run the garbage collection algorithm

itself. Thus, a crash in the middle of garbage collection would leave the backing store of

virtual memory in a state that would make recovery using virtual memory impossible.

teRecovery using virtual memory introduces a new requirement for garbage collection:

the stable state cached in virtual memory must be recoverable even if a crash occurs during

garbage collection. A garbage collection algorithm satisfying this requirement is called an

atomic garbage collector. Devising an algorithm for atomic garbage collection requires two

interrelated algorithms: an algorithm for garbage collection and an algorithm for recovery

during garbage collection.

This chapter presents a method for atomic garbage collection that allows recovery using

virtual memory in the event of a soft crash; the next chapter integrates the method into a

recovery system for Argus. The description of the atomic garbage collector includes back-

21

Ie %jV h % . % % s ~ ~ % . % - 5 ~~5 5- . .

i.' %. d a**~

,P

ground and assumptions, a general outline of steps for making garbage collection atomic, a

brief review of copying garbage collection, a demonstration that a copying garbage collector

is not resistant to crashes, a description of the modifications to a copying garbage collector

to make it atomic, and an evaluation of the algorithm.

3.1 Background and Assumptions

Garbage collection techniques can be classified according to whether they are real time

or "stop the world." A real time garbage collector works in parallel with the program

actually running. Steps of the garbage collection are interleaved with program steps. A

"stop the world" garbage collector is invoked by a program when it needs to reclaim storage

in its heap. While a "stop the world" garbage collector works, the program is suspended.

The user of a system employing "stop the world" techniques usually notices a delay during

garbage collection.

The recovery methods developed in this thesis are designed to be used on a standard

architecture, a general purpose register machine with virtual memory. Such a machine

would have no special purpose hardware to aid in garbage collection. In general, real-

time garbage techniques are not suitable for such a machine. Real-time garbage collection

techniques need special purpose hardware such as that found on the Lisp Machine [20]

in order to be feasible. Thus, this thesis limits itself to a discussion of "stop the world"

techniques.

In fact, only copying garbage collection [19,8,4] is considered. Other techniques that

can be classified as mark, sweep and compact are not as well suited to virtual memory sys-

tems [5]. They require that the accessible objects be traversed more times than is needed

for copying garbage collection. Each traversal of the accessible objects means paging over-

head. For example, the garbage collector currently used by Argus, similar to the Lisp 2
collector[121, requires four traversals of the accessible objects. Two of these traversals page

virtual memory randomly - the mark phase follows the graph of accessible objects, and the

phase that recalculates the values of pointers references old object locations in order to find

new object locations. Copying garbage collection traverses the accessible objects only twice

-once following the graph of accessible objects in from-space and once traversing to-space

22

, % % % ° • ". " . ° % % * % % ,- . - , ° ,o • •, . • -. . • *o . , • " . - , ' .- , . - - x .
I","k

sequentially.

It is assumed that the operating system provides primitives that give the implementor of

atomic garbage collection control over the paging of virtual memory. Primitives are needed .-

to pin and unpin pages of virtual memory, and to tell the system to write a specific page of

virtual memory to the backing store. Pinning a page of virtual memory in physical memory

means that the page cannot be written to its place on the backing store until it is unpinned.

Pinning primitives are used for buffer management by database systems[10] and in other

transaction systems that tie recovery to virtual memory[7,24].

The last assumptions that need to be discussed concern the structure of objects. Objects

consist of a descriptor and a body. The descriptor identifies the type and the length of the I'r

* object; and the body contains the object's value including pointers to other objects. One

assumption is that the descriptor is large enough to contain a pointer. A second assumption

is that it is possible to tell the difference between a valid descriptor value and a pointer.

This is possible if one bit position of each memory word is used to distinguish pointers

"" from all other values. These assumptions are standard for most systems with variable-sized

objects implemented on standard architectures; in particular they hold for the current Argus SJ-

implementation.

3.2 Outline of Steps for Atomic Garbage Collection

Here is an outline of steps taken at the time of garbage collection to make "stop the

world" garbage collection atomic:
1. Record on a medium that survives soft crashes that garbage collection has begun. In

the event of a crash, this notifies the recovery system that it needs to use its special -*-01

algorithm for recovery during garbage collection. This record must be physically

recorded on a medium that will survive a soft crash before the garbage collection
begins.

2. Garbage collect.

3. Record on a medium that survives soft crashes bookkeeping information about the
compacted memory specific to the recovery algorithm used by the recovery system.

The information relates virtual addresses before the garbage collection to the corre-
sponding addresses after the garbage collection. In the worst case a pair of addresses
might be required for every object accessible from the stable variables. The amount
of information required depends on the recovery system and the garbage collection

% %%

23

.S

-- .,€...-....-.. . -5.'.., '.' .-.-......-.-. ..-. - ,.-.-...- -......-.-.-. . . . U. ,", ,"-, S.. " '

algorithm. Bookkeeping for a specific recovery algorithm is presented in the next
chapter.

4. Write all dirty pages of virtual memory to the backing store to insure that the backing
store is consistent, i.e., that all objects are at their new locations.

5. Record on the same medium used in the first step that garbage collection has com-
pleted.

A soft crash occurring after step 1, but before step 5 is complete, is a crash during garbage
collection.

The simplest method for atomic garbage collection turns a crash during garbage collec-

tion into a hard crash. Then any algorithm could be used for garbage collection. Although,

such a method is simple to implement, the relative cost of recovery from a crash duringmIgarbage collection compared to the cost of recovery at other times would be high. Since soft

crashes are much more frequent than hard crashes, the recovery system should be tuned to

make recovery from soft crashes as short as possible. The overall cost for recovery would

depend on the fraction of time spent garbage collecting. If that ' ion were low enough,

then the simple method might be acceptable. Otherwise, an atomic g, "bage collector that

allows recovery using virtual memory in the event of a soft crash needs to be devised. For

such a collector to be viable, the extra costs it imposes for garbage collection need to be kept

to a minimum. After reviewing copying garbage collection, the remainder of this chapter

will deal with such a collector.

3.3 Copying Garbage Collection

In a system that uses copying garbage collection, the address space is divided into two

semispaces: from-space and to-space[8,4]. The program allocates all new objects in from-

space until the memory in from-space is exhausted or the paging behavior of the program

needs to be improved. At that point, garbage collection is initiated.

During garbage collection, all accessible objects are copied from from-space to to-space.

As each object is copied, a forwarding pointer is left in its from-space copy. The purpose of

forwarding pointers is to preserve sharing in the object structure. Forwarding pointers also

prevent an objv,,t from being copied more than once into to-space.

24

4,
.

First the root objects are copied to to-space. Then to-space is scanned sequentially

for pointers into from-space. As each such pointer is found, it is dereferenced to find the

object to which it points in from-space. If the from-space object has a forwarding pointer,

that object has already been copied to to-space, so the pointer in to-space is changed to '

point to the to-space copy. If there is no forwarding pointer, the object has to be copied

from from-space to to-space, leaving a forwarding pointer in the from-space copy. Garbage

collection ends when all of to-space has been scanned; at that point all of the accessible

objects have been copied to and compacted in to-space. Then the roles of from-space and

to-space are reversed and the program proceeds.

An example of copying garbage collection can be seen in figure 3.1. Object A, the root

object, is copied to to-space. A forwarding pointer is placed in the from-space copy of object

A. To-space is scanned sequentially for pointers into from-space. Pointers to objects B and

C are found in object A. Objects B and C are copied to to-space to the next free locations.

*A pointer to object C is found in object B. The forwarding pointer in object C indicates

that it has already been copied.

0. 3.4 Crashes

To understand why copying garbage collection is not atomic, consider what happens

if a crash occurs in the middle of garbage collection. The pages of virtual memory are

being paged in and out of the physical memory according to the way the graph of accessible

* objects is being traced and copied. A crash will likely leave the contents of the backing store

of the virtual memory in an inconsistent state. The following two examples show the two

kinds of problems that can occur as a result of a crash in the midst of garbage collection 0

and that need to be prevented by an atomic garbage collector.

Figure 3.2 shows an example in which object descriptors are lost. Figure 3.2.a shows an

object copied from from-space to to-space; a forwarding pointer was placed in the from-space N

copy. The forwarding pointer takes the place of the object descriptor. The page of from- -. ,"

space on which the old object version resides is written to the backing store. Figure 3.2.b

shows what happens if the system crashes before the new version in to-space reaches the

backing store. The backing store will not contain a valid version of the object after the crash. -

25

I% %

L

C

-Ta

- -- -- - --- - - - - - - - - - - - -

From-space To-space

3.1.a: Root Object is Copied .

- - - - - -- - - - - - - - - - - - -
10

A*

JA

L - - - - - -

Prom-space" To-space

3.1.b: To-space is Scanned

- - - - - - -- - - - - - - - - -

From-space iTo-space

3.1.c: Forwarding Pointers Preserve Sharing

* Figure 3.1: Example of Copying Garbage Collection

26

.1 P.

-a'. ~ ~ h * .*.

G GE E

.%.

W"Fom-spac T-pace

', 3.2.a: Virtual Memory Just Before Crash

- - -- --- - i

p P
A -- AG [1..... G

E -.... 4E ..
From-space To-space-"

3.2.b: Backing Store After Crash

Figure 3.2: Lost Object Descriptor %

The object descriptor of the object has been overwritten with the forwarding pointer, and -

is not available on the backing store for from-space. Neither is it available on the backing .
store for to-space..

The second example, illustrated in figure 3.3, shows why the pointers on the backing
store for to-space cannot be used for recovery after a crash. An object is copied, but its

forwarding pointer does not survive the crash; recovering on the basis of information already .

copied to to-space would not preserve the sharing in the graph of accessible objects. Objects
A, B, and C have been copied to to-space, but the pointer to object C from objct B has not

yet been replaced by a to-space pointer. The crash occurs after pages I and 2 of from-space '
and pages 1 and 2 of to-space have been written to the backing store, but before page 3 of

Sfrom-space has been written. The result is pictured in figure 3.3.b. The forwarding pointer
for object C has been lost even though the object has already been copied to to-space.

3.5 Making Copying Garbage Collection Atomic

A progression of ideas that can be used to make copying garbage collection atomic is

presented in order to facilitate the explanation of the actual algorithm. This series of ideas

also makes the correctness of the final algorithm apparent. The basic observation motivating

all the ideas is that from-space needs to be restored to its original state before the onset

.%

fromrsacea s b e The f w point
,.

N.

nnpwvvvv W~W~v X-0TF -F~A W-%W WWW!-f FWIIVL-v-WI~r. IV W.

0 G

E E
S 3
P P

A A
G G

EE
2 2
P
AA
GG

From-space To-space

3.3.a: Virtual Memory Just Before Crash

_ __ __ P p

A 01 AG G
E l E%

P

G G
E - - -

2 1.- - - - - - -A -

From-space To-space

3.3.b: Backing Store After Crash

Figure 3.3: Lost Forwarding Pointer i
28

% *9*,,~
p ~- ~f~. ~ *>- ,AA

3.
.4VU

of garbage collection. Then, after recovery, garbage collection can be restarted using a

fresh copy of to-space. Since the object descriptors are the only information overwritten in

from-space during garbage collection, reconstructing the object descriptors in from-space is

sufficient to allow recovery.

The first idea is to allocate an extra cell per object to hold the forwarding pointer in

order that the forwarding pointer need not overwrite any information in the descriptor.

Then if a crash occurred during garbage collection, no information would be lost. The

backing store for to-space could be discarded and copying garbage collection re-started to

a fresh copy of to-space.

The cost of this method is that an extra cell is needed for every object even though the

stable objects are the only ones that need to be recovered after a crash. Virtual memory

contains both volatile and stable objects. Since a volatile object can become stable at any

time by being made accessible from a stable object, volatile objects also need the extra cell.
*
D

S

*, The next idea is motivated by the inadequacies of the initial idea. It consists of two

parts.

First, the stable objects that have to survive crashes can be copied before the volatile

objects are copied. This is easy to achieve in Argus since the set of stable objects is defined

as all objects accessible from the stable root. Then it is possible to insure that the overhead
...

for making garbage collection atomic is paid only while the stable objects are being copied.

Second, a write-ahead log[9 can be used to record changes to from-space while the stable

objects are being copied. The only changes being made to from-space are the insertions of

forwarding pointers in place of object descriptors. Only enough information needs to be

recorded in the write-ahead log to undo those changes. For each object copied, a pair of

values is entered in the log, the first giving a from-space address of the descriptor and the

second, the original contents of the descriptor. The write-ahead log principle requires that

the from-space page on which the object descriptor resides needs to be pinned in physical

memory until the log record recording the change is written to the log. The write-ahead log

need not be recorded on stable storage since its storage need not be any more fault-tolerant

than the non-volatile memory used for the backing store.

To recover from a crash during garbage collection, the backing store for to-space is

29 , .e

. - ' N. %

J.p

discarded. The write-ahead log is read and as each of its records is processed the information

is used to restore the object descriptors in from-space. When the write-ahead log has been

processed entirely, from-space will be in the same state as it was before the garbage collection

commenced. All dirty pages of from-space are written to the backing store, and the garbage

collection algorithm can be restarted from the beginning.

The advantage of the write-ahead log is that the extra price paid for garbage collection

is proportional to the number of stable objects. Furthermore the extra storage required is

not part of the virtual address space and it is only needed during the garbage collection

process. However, extra storage is still required.

The final idea reduces the extra storage required to make copying garbage atomic. It is

based on the following observation: to-space can be used as a write-ahead log for from-space.

The details are presented below.

3.6 Atomic Copying Garbage Collection

Now the algorithm for atomic copying garbage collection can be described. The basic

step of a copying garbage collector is the copying of an object from from-space to to-space.

This is the step in which atomic copying garbage collection differs from plain copying

garbage collection.

3.6.1 Copying Step

The copying step will now be described in detail. First, the page in from-space on

which the object to be copied resides is pinned in physical memory. Then, the object is

copied to the next available block of storage in to-space and a forwarding pointer is put

in the object in from-space, overwriting its descriptor. As each page in to-space fills with

copied objects, it is written to the backing store. The from-space page of a copied object is

unpinned after the to-space page to which the object was copied reaches the backing store.

Figure 3.4 shows the copying step pictorially.

The copying step uses the write-ahead log principle; to-space is being used as a write-

ahead log for from-space. In terms of the problems introduced by a crash during garbage

collection, the pinning of the from-space page in the copying step prevents the problem

30

0"o

.1

FROM-SPACE PAGE TO-SPACE PAGE

0

5,1I PIN
L...Jpinned PI

2 COPY
L....J pinned CO

A - -- INSERT
3 1FORWARDING
n rpinned Ln POINTER

0

4Lj pinned -backingE
store

5 .UNPIN

Figure 3.4: Sub-steps of the Copying Step of the Atomic Algorithm

31

%0

% % % *

WUWII~W Wh WVj WVVWVrWVVVW WV4MrMW-r ~UW9 iUWW1 i W %WU.- VVUWU~FI'V~W ~WU. VV~w .W ~W

of lost object descriptors. ii. guarantees that there is always a valid copy of an object's

descriptor on the backing store.

Now it is clear why the assumption that object descriptors be big enough to hold a

forwarding pointer is needed. The forwarding pointer cannot overwrite any memory location

in the from-space copy of the object; it can only overwrite a location whose contents could

be recovered from to-space after a crash. Because object descriptors are not changed in

to-space by the copying garbage collection algorithm after they are copied, they are an

appropriate place for the forwarding pointers.

3.6.2 The Algorithm

Here is the full algorithm. It follows the basic outline for an atomic garbage collector

described earlier. The steps that differ from the basic method are discussed below.

*1. Write all dirty pages of from-space on which stable objects reside to the backing store.

2. Record on a medium that survives soft crashes that garbage collection is in progress.

3. Use copying garbage collection with the following modifications:
4..l

" The stable root is copied first.

" To-space is used as a write-ahead log for from-space as described above.

" To-space pages are written to the backing store as they fill with copied objects.

4. Write all dirty pages of to-space to the backing store.

5. Record bookkeeping information required by the recovery system.

6. Record on the same medium used in the second step that garbage collection has 7
completed.

7. Copy the volatile objects to to-space using normal copying garbage collection.

.4

The first step insures that all stable objects are in a consistent state on the backing store

for from-space at the outset of garbage collection. It reduces the interaction between the

recovery procedure for a crash during garbage collection and the normal recovery procedure

for a soft crash (presented in the next chapter). If it were omitted, the recovery system

would need to reconstruct the portions of from-space that had not reached the backing store

before the beginning of the garbage collection before it could undo the damage caused by

the garbage collection. This could be done using the recovery procedure for a soft crash

32

4;22

to recover the stable state in from-space. As each object is accessed during that procedure

its object header would have to be reconstructed by following its forwarding pointer to

to-space.

The first step also allows an algorithm for recovery from a crash during garbage collection

that is more space efficient. The recovery algorithm, presented in the next section, depends

on the fact that the to-space that would have been constructed by the copying process if

a crash had not occurred is identical to the to-space that is reconstructed by the recovery

algorithm. If the step were omitted, a mutex version recovered from stable storage would

not necessarily be the same as the version in from-space before the crash. The reconstructed

object graph would be different than the one when garbage collection commenced. Garbage

collecting the reconstructed from-space would not yield the same to-space that would have

been constructed before the crash.

The actual copying algorithm has already been discussed.

Flushing all dirty pages of to-space to the backing store assures that all of the stable

state is on the backing store for to-space in a consistent state. Note that flushing is not

required for dirty from-space pages; from-space pages are not needed by the recovery system

once it has been recorded that the garbage collection is complete.

Only the garbage collection of the stable state needs to be atomic. Once all the stable

state has been copied to to-space, all dirty pages of to-space have been flushed to the backing

store, and the bookkeeping information has been recorded, the garbage collection has ended
%;.

as far as the recovery system is concerned. Normal copying garbage collection can be used

%, to complete the copying of the volatile state.

3.7 Crash Recovery

Before discussing the actual recovery algorithm in the event of a crash during garbage

collection, a few observations are in order. What can be said about the backing store

that survives a crash? From-space is intact except for object descriptors that have been

overwritten by forwarding pointers. Because the write-ahead log protocol was followed

before pages of from-space were written to the backing store, the object descriptors that

have been overwritten in from-space exist in to-space.

S 33 ,2.'

e%,6

-i

The simplest recovery algorithm uses to-space as an undo log. It traverses the stable

state in from-space starting with the stable root. Every time a forwarding pointer is en-

countered in the place of a descriptor, it is dereferenced to retrieve the descriptor from

to-space and the original descriptor is returned to from-space. When the whole stable state

has been traversed, all dirty pages of from-space are written to the backing store, the stor-

age for to-space is released, and the garbage collection is restarted. This solution requires

the stable state to be traversed twice, once to restore the descriptors and once to garbage

collect. Alternatively, garbage collection and the restoration of object descriptors can be

carried out in parallel if objects are copied to a fresh copy of to-space.

The observation that copying garbage collection is deterministic is the key to designing

a more efficient algorithm. The from-space reconstructed using to-space as an undo log

is identical to the from-space before the beginning of the garbage collection preceding the

crash. Determinism means that starting with two identical copies of from-space as input to

the copying algorithm, two executions of the algorithm produce identical copies of to-space.

This means that the restoration of object descriptors and the copying algorithm can be

carried out in parallel and that the same copy of to-space can be reused. As each object is

copied to to-space during recovery, it is copied to the same location to which it was copied

or would have been copied before the crash. If the object's descriptor was overwritten with a

forwarding pointer before the crash, its original descriptor is found in to-space and restored

to the object.

Now the algorithm for recovery from a soft crash during garbage collection can be

presented. First, the stable root is reconstructed in to-space. It is reconstructed on the

basis of the contents of the descriptor cell of its from-space copy according to the method

described below. Then to-space is scanned sequentially as in atomic garbage collection for

pointers into from-space. The scan starts with the reconstructed copy of the stable root.

As each pointer to from-space is processed, the object to which it points is reconstructed.

It, too, is reconstructed on the basis of the contents of the descriptor in its from-space copy.

Recovery of the stable state is complete when all of to-space has been scanned.

When processing the pointer to the stable root in from-space or a pointer to an object

in from-space encountered during the scan of to-space, the action taken depends on the

34

%

.. %
% % , -,,".

contents of the descriptor cell to which the pointer points. There are three cases (only the

first two apply to the stable root):

1. The cell is a forwarding pointer to an object that has not yet been reconstructed
during recovery. The location of the object in to-space from the original garbage
collection and the next location to which the recovery algorithm would copy an object
are identical. Thus, the location of the object's descriptor in to-space has been found.

The object is reconstructed using its descriptor in to-space and its body from from-

space.

2. The cell is a descriptor. The object's descriptor was not overwritten on the backing
store; use the copying step of the atomic garbage collector to copy the object to
to-space.

3. The cell is a forwarding pointer to an object that has already been reconstructed
during recovery. The forwarding pointer is a valid forwarding pointer; the object has
already been reconstructed.

Note that cases 1 and 3 can be differentiated by keeping track of the next free location

in to-space during recovery. If the forwarding pointer is less than the next free location

(assuming to-space is allocated in the order of increasing addresses), case 3 results. If they

are equal, case 1 results.

Figure 3.5 shows an example of recovery after a crash in the middle of garbage collection.

Figure 3.5.a shows a possible state for virtual memory before the crash. Figure 3.5.b shows

a possible state for the backing store after the crash. The crash occurred after pages 1 and

2 of from-space and page 1 of to-space had been written to the backing store, but before

page 3 of from-space or page 2 of to-space had been written. Note that the state pictured

in figure 3.5.b is one that could be produced by the atomic copying garbage collector. Both

objects whose descriptors have been overwritten with a forwarding pointer in from-space

(A and B) have survived in to-space. The forwarding pointer for object C can not have

overwritten the descriptor for object C on the backing store for from-space, because object .AS

C has not been written to the backing store for to-space.

Recovery starts with the reconstruction of the root object in to-space in figure 3.5.c.

The root object is an example of case I from the algorithm; its descriptor in from-space has

a forwarding pointer to the next place to which an object would be copied in to-space (the

first location of to-space). The descriptor of the root object is taken from to-space, and its

body is recopied from from-space to to-space. For case 1, a tempting "optimization" would

A -,

V Y) ~ P T~'M 1P 'J I - -_f. - - - ~ - - - - -f - - - J - T - 2 - ~ - 2 - - - -~ - I - - - -~W - --. j- W' V-J .

P 7%P
A A

E
33

P P

GG
E

2 2

AA

'E
1 1

From-space To-space

3.5.a: Virtual Memory Before Crash

P P
A A
G G
E E

P
A A

G %

E E
2 - 2

PP

* G G

From-space To-space

3.5.b: Backing Store After Crash%

A AG G
E E

P rp

G G
E E

2 L .. I

G7r--- 1 1

*From-space Iro-space

3.5.c: Root Object is Reconstructed

* 36

* A
% % %

L-

be to recover the bodies of objects from to-space. Return to figure 3.5.b and consider what

would happen if this were done for the root object. Object C would never be recopied to

to-space.

Continuing with figure 3.5.c, to-space is scanned sequentially for pointers into from-

space starting with the newly reconstructed root object. The first such pointer is a pointer

to object B in from-space. Object B is another example of case 1 from the algorithm; its

descriptor in from-space has a forwarding pointer to the next place to which an object would

be copied in to-space. Thus, the object has not yet been reconstructed during recovery. It is

reconstructed in to-space using the descriptor from to-space and its body from from-space.

The result is pictured in figure 3.5.d.

Continuing the scan of to-space for pointers into from-space in figure 3.5.d, a pointer

to object C is found. Object C is an example of case 2 from the algorithm; the descriptor

for object C is on the backing store for from-space. It is copied as is from from-space to

to-space. The result is pictured in figure 3.5.e.

The next pointer into from-space from to-space is the pointer to object C in object B.

This is an example of case 3. Object C is an object that has already been reconstructed by

the recovery algorithm; the forwarding pointer in from-space points to an area of to-space

that has already been reconstructed. The result is pictured in figure 3.5.f.

3.8 Evaluation of the Algorithm

The algorithm presented for atomic garbage collection should be compared to the

normal copying algorithm to evaluate what costs it adds. The atomic algorithm only adds

cost to the garbage collection of stable objects. There is no extra cost for the garbage 0

collection of volatile objects. Since only stable objects need to survive a crash this is a

desirable property.

The added costs are proportional to the number of stable objects. In the worst case,

every object being copied resides on a page of from-space that has not yet been pinned, and %

there is one page pinned (and unpinned) for every object copied. Pin and unpin operations

should be fast. A possible implementation follows. The pin operation sets a bit in the page

or frame table; the unpin operation resets the bit. Keeping track of the pinning is a little

37 I
%\%* % .4 - % o . . , . .. - . %. . .

%.

"- - - - - - - - - - -- - --- - - - -

p p
A CA
G G
E E

- 3 3
- p

G A S

E
G

E E

. ..- - - -

P P

"-A B --- ""

Gp

A A '

,. 1 1

tFrom-space To-space

'-= 3.5.d: Case 1

,P, P

A A

E E
3 3

-' - --- - - - -

p p
A C A

G G

.'E E

2 2

-. "G.-. . 5.,
-" -G--E - - - - - - - -AE -"' - -- - -- -"

E

a. 1 1 , ',

a. From-space To-space

3.5.e: Case 2

p p
A A

*G G
*E E

3 : 3s";

-~ - - -. --- -- - -

p P
A C A

GG
EE

2 2

AA A
G G

From-space To-space

S 3.51f Case 3
%

Figure 3.5: Recovery Example

* 38

%

more complicated. The atomic garbage collector keeps a list of pinned from-space pages

for each to-space page to which objects are being copied. To avoid conflicts of unpinning a

page of from-space when it is pinned on behalf of more than one to-space page, it also keeps

a counter for each pinned from-space page that counts the number of to-space pages for

which the from-space page has been pinned. The atomic garbage collector calls a primitive

of the virtual memory system to notify the system that a to-space page has to be written

to the backing store. The virtual memory system notifies the collector when the page has

actually been written by setting a flag. The collector checks the flag when it is ready to

write the next page of to-space to the backing store. The collector decrements by one the

counter for each from-space page in the list for a to-space page that has reached the backing

store. If the counter is 0, the from-space page is unpinned.

The atomic garbage collection algorithm increases I/O activity to the backing store.

Pages of to-space are almost always written to the backing store twice - once when they

fill with objects copied from from-space and the second time when the whole page has

been scanned for pointers to from-space. The original non-atomic algorithm could exhibit

the same behavior, but a smart paging policy for garbage collection might avoid it. The

original non-atomic algorithm does not need to use large areas of physical memory for

pinned from-space pages; more pages of physical memory are available to be allocated to

pages of to-space. Therefore, using the original algorithm it is more likely that a to-space

page could stay in physical memory from the time the first object is copied to it until its

last location has been scanned for a pointer to from-space.

Although, there is also a potential for more faults on pages of to-space using the atomic

algorithm because more pages of physical memory have to be devoted to from-space pages,

buffering techniques could be used to avoid processing delays caused by page faults. The

order in which the pages of to-space will be scanned for pointers into from-space is sequential.

I/O activity and copying can proceed in parallel; while one page of to-space is being scanned,

the next page can be read into physical memory.

For acceptable performance, the physical memory should be large enough to avoid in-

creasing I/O activity by writing a page of to-space to the backing store more than twice. If

the number of pages pinned at once on behalf of one to-space page is too high, then a page

39

.% ...
'p.

of to-space might have to be written to backing store before it is full. A rough approxima-

tion shows that the number of pages of from-space that are pinned at once is reasonable.

Assuming that pages are 1024 bytes long and that the average object in Argus is 5 words

long (20 bytes); there are 51 objects per page on average. The average number of pages

that need to be pinned at once on behalf of one to-space page should be much lower than

51 due to locality of reference.

3.9 Extensions of the Algorithm

Several authors[6,201 have suggested that copying garbage collection can be used to

increase the locality of refence in virtual memory for the objects it copies. The copying

algorithm as presented in this chapter traverses and copies the graph of accessible objects

in a breadth-first fashion. Moon[20] argues that, for Lisp, depth-first copying yields better

locality than breadth-first copying. He suggests a method of copying called approximate

depth-first copying, which uses depth-first copying on partially filled pages of to-space. A

similar strategy for preserving locality of atomic objects could also be used in the imple-

mentation of Argus.

Proposals for changing the order in which objects are copied for the purpose of increasing

locality of reference can be incorporated into atomic copying garbage collection as long as

the resulting algorithm is deterministic. The recovery algorithm would have to be changed

so that it copies objects in the same order as the new garbage collection algorithm. The

recovery algorithm works as long as any two executions of the new copying algorithm always

copy an object in from-space to the same place in to-space.

4i

400

40

,,,, ,,,, .. -,,. -..a,,,.'-.... -.. - . , -, . .- , "- "- ,,.-',,. "% .. - . .. ".. -- .. . *. . :.. ' - _ '- .'. '. - ,,.' -.. ' -" -

A.

.. w.

A,.,2

Chapter 4

Recovery Using Virtual Memory '.-

This chapter outlines a method for recovery using virtual memory. First recovery

for built-in objects is discussed. The topics include the representation of built-in atomic

objects, the log, checkpoints, updating object headers, restoring built-in atomic objects after

a crash, garbage collection and a sketch of the recovery algorithm. Next, the recovery of

mutex objects is covered. Finally, methods for housekeeping the log are discussed. A

Where there are a number of solutions possible to solve a particular problem, a single

solution has been chosen for the method being outlined. Chapter 5 discusses alternatives.

When a crash is discussed in this chapter, this means a soft crash unless otherwise

indicated.

4.1 Representation of Built-in Atomic Objects

Recovery using virtual memory restricts the representations possible for built-in atomic

objects. The representation chosen must ensure that there is information on the backing

store that is usable after a crash. A shadowing mechanism similar to the one used in the

current implementation of Argus can fulfill this requirement[18]. j.

In the description that follows some details of the representation have been simplified.

Information required to support nested actions is not discussed; it does not need to survive a

crash because actions in progress that have not prepared are aborted by a crash. Therefore, "

the representation chosen for that information is not constrained by the recovery system.

The shadowing mechanism is implemented by using a header for each built-in atomic

object through which all references to the object are directed. The header contains a

41

% w..v

. %%,

~i
/.

UID Base Current Lock

Figure 4.1: Built-in Atomic Object

unique object identifier (UID), pointers to a base version and a current version, and lock

information. The UID is required to maintain inter-object references on stable storage.

The base version is the last object version to be committed by an action; it is not modified

by actions in progress. Modifications to the object are made to the current version. The

lock information is associated with the current version; it consists of the AID, or action %/

identifier of the action holding a lock on the object and whether the lock is read or write.

The updating of pointers in the header is closely coordinated with two-phase commit for a

top action that holds a write lock on the object. The pointer to the base version is updated

only as part of the commit phase during which the current version replaces the base version.

The representation for a built-in atomic object is illustrated in figure 4.1. The header .
e

and each component of the built-in atomic object to which a field in the header points are

themselves objects.

Atomic object headers do not move within the virtual address space except during 5..

garbage collection. Garbage collection is also the only way the pointers in the header to a

base version or prepared version can change outside of the two-phase commit protocol of

an action.

Atomic object headers and the components of the object to which fields of the header r. e

point can span page boundaries. The only restriction is that individual fields of the header

not span page boundaries.

4.2 The Log

As in the current recovery system[21,22], stable storage for a guardian is organized as

a log. The structure of the log and the algorithm for writing to the log remain essentially
the same. This section discusses the way resilient objects are referenced in the log, the way

objects are copied to the log, and the way log records are formatted and written to the log.

42

.. .,.,- . .,'5,:5.-., -..• ,5-...:........ :.*., ,.._
i *S , M a'k'e .[... * -.,,, .,,,,. ', - , 5 . ,=.. , ' 5. ." .5 .: J ;': ;" . ..

"
.

% ' % ' ' % ' '' ' ' '
.5.5." 5.%

4.2.1 References to Resilient Objects

References to resilient objects are recorded in the log using <UID, virtual address of

object header> pairs. The UID uniquely identifies the object for recovery from a hard crash.

The virtual address of the object header is used both to locate the object in virtual memory

and to identify the object for recovery from a soft crash. Recording both the UID and the

virtual address might seem redundant. However, objects move during garbage collection.

By pairing UIDs and virtual addresses in every reference to an object, a map of UIDs to

virtual addresses of object headers is being recorded incrementally in the log; chapter 5

discusses an alternative.

4.2.2 Copying an Object

The method used to copy most resilient objects to the log is incremental. Specifi-

cally, each built-in atomic object is copied to the log in a separate incremental step. Im-

mutable objects such as sequences may or may not be copied incrementally depending on the

implementation'. Inter-object references between objects that have been copied in separate

incremental steps are supported using resilient object references, <UID, virtual address of

object header> pairs.

Objects in virtual memory are stored in a heap. When one object contains a second

object, the second object is not physically contained within the first object; rather, a pointer

is used to refer to it. Exceptions are made for small objects such as integers and characters

for efficiency reasons. When an object is copied to the log, it is flattened or linearized with

respect to its representation in the heap. Specifically, when the current version of a built-in

atomic object is copied to the log, its log version is contiguous and contains the current

version followed by contained objects that are being copied in the same incremental step I %

(for example, sequences). Pointers to other objects copied in a separate incremental step

are replaced by resilient object references in the log version. Pointers to objects copied in

the same step are replaced by relative offsets within the log version.

'The recovery system can decide whether or not to copy an immutable object incrementally depending %
on its size and the degree to which it is shared. If it is large (eg. a large sequence) and is shared by more
than one stable object, it saves space in the log to copy it just once.

43

N. N. % % %

% % % %%

4.2.3 Log Records and Writing to the Log

There are two types of log records: data records and outcome records. A data record

contains the value for a single resilient object. That value is flattened and copied to the log P

as discussed previously. Outcome records are used to record information during two-phase

commit. Figure 4.2 illustrates the contents of these records. There are two categories of

outcome records: those containing information for participants in two-phase commit and

those that contain information for coordinators. The former category includes the prepared,

committed, aborted, prepared-data and base committed records; the latter includes the com-

mitting and done records. The former category also includes mutex records; section 4.8

discusses mutex objects and records.

Each outcome record has a log pointer as a component, linking it to the previous outcome

record in the log. This reverse chain of log pointers is followed during recovery to determine

the order in which log records are processed. The outcome records form a log within the

log.

Writing to the log is coordinated with two-phase commit. When an action prepares, the

recovery system writes a data record to the log for each resilient object that was modified

by the action and is accessible from a stable variable. The data record contains the value

of the object's current version. The system determines which objects need to be written by

keeping track of the set of objects that were modified by the action (Modified Object Set or S

MOS) and intersecting that set with the set of objects accessible from the stable variables

(Accessibility Set or AS). .

*' A base-committed record is written to the log for any object that was made accessible

from the stable variables by the action (called a newly accessible object). The base-com-

mitted record contains the object's UID, the virtual address of its header, and an object

value containing the value of the object's base version in the same format as a data record. ij
If the action also modified the newly accessible object, its current version is written to

the log as a separate data record. A prepared data record is written to the log for any newly

accessible object that is in the MOS of another action that has already prepared but not

committed. The prepared-data record contains the object's UID, the virtual address of its

header, the action identifier of the action that had previously prepared, and an object value

44

% %.
p, , .,, ,.e ' ' ,... ..,. ,. .,. ' " ' ' ' . ' . " " " . .' , " . " . - . " ..-' ' . ,-.-,.,-.-' " - .,- -. ,.,--

,,,,", ,- , ,. , '. ,,-.-,:,. , , . . , _ . .,'. ..'.'-. •-,- , ,,-... -.. -.. . . - - .- .- ,

wwwwu~~~~~~w~~~v~~uvT--ww ' wwwxWW UUWW W P'N R5 F - '

m.Y

4.2.a: Data Entry

object value

4.2.b: Outcome Entries for Participants ,i

prepared committed

<virtual address, UID, log pointer> action identifier
"'". log pointer

action identifier

log pointer

aborted

action identifier

log pointer

base-committed prepared- data

UID UID

virtual address of object header virtual address of object header

object value action identifier

log pointer object value

log pointer

4.2.c: Outcome Entries for Coordinators

committing done -

guardian identifier action identifier
--- log pointer

action identifier

log pointer -

Figure 4.2: Format of Log Entries

455

d. 45 30 d

..- ~- ..,- .. '-.::.....% .: ,,,.,..- ,..-.,-,j,-:,-,,,.+'-,

C,

containing the value of the object's current version in the same format as a data record.

Note that the prepared-data and base-committed records are hybrid records containing .4

both outcome information and object values. "%
4%.

Once all of the data records, base-committed, and prepared-data records have been

written to the log on behalf of a preparing action, the prepared record is forced to the log.

The prepared record contains the action identifier for the action and a list of triples, one

triple for each resilient object the action has modified. Each triple contains the UID of the

object, the virtual address of the object's header in virtual memory and a log pointer to the

data record containing the value of the object's current version.

When a guardian receives the commit message from the coordinator of two-phase commit
•. .

for an action for which it was a participant, it installs the current versions as new base

versions and releases locks for the objects modified by the action, and writes the committed

record to the log. If the guardian receives the abort message, it discards the current versions

and releases locks for the objects modified by the action, and writes the aborted record to

the log. Both the committed and aborted records contain the action's identifier.

When a guardian acting as coordinator for an action has received prepared messages

from each of the participants for that action and has decided to commit, it writes the

committing record to the log. The committing record contains the identifier for the action -

and a list of identifiers for the guardians acting as participants. When the coordinator

receives an acknowledgement of commit from each of the participants, it writes the done

record to the log. The done record contains the identifier of the action.

4.3 Checkpoints

The current recovery system processes the log in its entirety to recover from a crash.

The new recovery system proposes to take advantage of information that survives on the .4-

backing store after a soft crash and only process part of the log. In order to do so, an

inexpensive mechanism is required for insuring that there is information on the backing

store that is reliable after a crash and determining what portion of the log has to be

processed to recreate the unreliable information. Checkpointing, a well known technique

applied in other systems such as System R[1O], fulfills these goals.

46

.. .4. %. " % " % "

Checkpoint Object %

Prepared Action Table

Lagged Object List a

Committing Action Table -

highest virtual address

highest UID

log address

Object List

<virtual address object header, virtual address object version>
V.

Figure 4.3: Format of Checkpoint Object V

A checkpoint is taken periodically by halting computation at the guardian temporarily

so that the recovery system is quiescent, writing all dirty pages of physical memory to the

backing store, forcing buffered records to the log, and constructing and installing a new

checkpoint object in virtual memory. These steps insure that the contents of the stable

state on the backing store is consistent with the stable state in the log at the time of the

checkpoint.

The remainder of this section discusses the work saved by a checkpoint and the contents -.

of the checkpoint object, the installation of a checkpoint, and quiescence.

4.3.1 Work Saved by a Checkpoint

A checkpoint saves work by writing all dirty pages of physical memory to the backing

store and recording information in a checkpoint object. Figure 4.3 shows the format of the

checkpoint object.

A checkpoint saves all of the work done by actions that have committed before it is I]
taken. Writing all dirty pages of the physical memory to the backing store insures that the

A base versions and the pointers to base versions in object headers are on the backing store. A

pointer to a base version will be changed only if an action that modifies the object commits .1
after the checkpoint. In that case the base version saved by the checkpoint is superceded.

Thus, after a crash, no log records need be read for an action that committed before the

47 ii]

AA

VV N" -~150~~a

last checkpoint.

A checkpoint also saves the work done by actions that are prepared when it is taken.

The checkpoint guarantees that the current versions for objects that have been modified by .5.-

prepared actions will be on the backing store. However, when the prepared actions commit

after the checkpoint, the object headers are modified and the pointers to the current ver-

sions are lost. If the addresses of the current versions for all objects modified by prepared

actions are included in the checkpoint object, the versions can be found after a crash with-

out restoring them from the log. After a crash, the recovery system needs to determine the

actions that were prepared at the time of the checkpoint for which the guardian was a par-

ticipant and for each such action the list of stable objects that it modified. The information

concerning prepared actions is recorded in the Prepared Action Table in the checkpoint

object. It contains <action identifier, object list> pairs, one pair for each action that was

prepared at the time of the checkpoint. There is an entry in the object list for each stable

object modified by the action. Each entry is a <virtual address of object header, virtual

address of current version> pair. Note that after a crash, no prepared, prepared-data or

data record for a prepared action written to the log before the last checkpoint need be read;

all of the required information is included in the Prepared Action Table.

A checkpoint saves some of the work done by actions that are in progress when it is

taken. Some actions, though they are not yet prepared at the time of the checkpoint, might

have already written data records to the log. The situation arises when using early prepare,

for example. Early prepare is a way of reducing the latencies of two-phase commit using

an eager strategy - data records are written to the log after a handler call completes while

the guardian is otherwise idle in anticipation of the prepare message from the coordinator.

Early prepare is described in the papers on the current recovery system in Argus[21,22]. For

such cases, the current versions of objects that have already been logged will be written to

the backing store during the checkpoint. If the action prepares using these same versions,

tle versions will survive on the backing store after the crash; only pointers to the versions .-

need to be recovered. The Logged Object List is included in the checkpoint object to allow

these object versions to be restored to virtual memory without reading their data records

from the log. It contains an entry for each object version which has been written to the

.3'

48

-

.3..'

• • V
", - . - , j, • . -j - , .- • j, " . . - - - = " == ,r - - , = • e' - " - - .- ." - . . . - -) / ° . - , . - •0

" ¢ ' - #° . . ** %
•

. . . .° .. . -° ° - • . . . , ° . . • = . -...€. . -h ',L'.-' ,. .',. , , . , , .-- . . , - . , . ". ', ". ,. -% : . . '- z. - ", " . . . - -'. .- .' .- '.

7y)

log in a data record on behalf of an action in the process of preparing at the time of the

checkpoint. The entry maps the virtual address of the object's header to the virtual address

of the object's version that was written to the log.

After a crash the recovery system needs to determine the actions that were committing at

the time of the checkpoint for which the guardian was coordinator and the list of participants

for each such action. It must do so without scanning the whole the log. The Committing

Action Table in the checkpoint object is a table of <action identifier, log address> pairs,

one pair for each action that was committing at the time of the checkpoint. The log pointer

points to the committing record for the action. Recall that the committing record contains

the list of participants.
Both the recovery system and the guardian, once it has recovered, need to allocate

memory without overwriting the stable state on the backing store that has survived the

crash. If virtual memory is allocated continuously from low to high addresses, then it is

sufficient to record the address of the next free location in virtual memory at the time of

the checkpoint in the checkpoint object. Other schemes for allocating memory are possible

with the restriction that any scheme used must be able to record concisely what memory

addresses were in use at the time of the checkpoint. Note that any part of virtual memory

allocated after the checkpoint does not contain information that needs to survive a crash.

A guardian needs to continue creating new atomic objects after recovery. Each atomic

object is given a unique UID. Argus assigns UIDs by generating them in ascending numerical

order. In order to continue generating UIDs after the crash without repetitions, the recovery

system needs to determine the highest UID in use at the time of crash. In order to do so

without scanning the whole log, the highest UID in use at the time of the checkpoint needs

to be recorded in the checkpoint object.

To determine what portion of the log must be read after a crash, the log address of the

last record forced to the log at the time of the checkpoint is recorded in the checkpoint

object. No record written to the log before the checkpoint is read after a crash, except for

records to which the Committing Action Table points. The log address at the time of the

checkpoint is also used to determine when the information recorded in the Logged Object

List can be used. Data records with a smaller log address contain object versions that are

4, 49
* .4

| ' • 2' , , 2" ," 0" ,' , •° 4 , ,° ° •, • ." o*•, •,•," '%" 4. -, . . . ° "" '" " " " "" " " " " "" . . . " . .

on the backing store and do not need to be recovered from the log.

More information has been included in the checkpoint object than necessary for recovery.

The extra information lessens the number of log records that need to be read after a crash.

Recall that during recovery the log will be read in reverse order. The checkpoint object is

processed after all the outcome records written to the log after the checkpoint have been

processed. The minimum information necessary for the Committing Action Table would

have been a list of log addresses of the committing records for committing actions. Including

action identifiers means that committing records for actions for which a done record has

already been processed will not have to be read from the log. The minimum information

required for the Prepared Action Table would have been the list of log addresses of prepared

and prepared-data records for prepared actions. However, once the action identifiers and

the virtual addresses of current versions are included, all the information in those records

has been duplicated and their log addresses are no longer needed. -.

4.3.2 Installing a Checkpoint

The information recorded in a checkpoint object is used only when recovering from

a soft crash. Thus, the checkpoint object can be stored on the backing store of virtual

- memory; it does not have to be written to stable storage. To find it after a crash, a pointer

to the current checkpoint object is kept at a known place in virtual memory. The stable

root is already kept at a known place in virtual memory and is the root for the graph

of objects that must survive a crash. Hence, it is appropriate to store the pointer to the

current checkpoint object in the stable root. As will be seen in a later section, this choice

is albo good for garbage collection.

Installing the new checkpoint object is necessary for the checkpoint to take effect. Instal-

* lation has to occur atomically as the last step in taking the checkpoint. A new checkpoint

object is constructed and written to the backing store. Then the pointer to the current

checkpoint object is changed to point to the new checkpoint object, and the page of virtual
,'. ~ ~memory on which the pointer resides is written to the backing store. . ,

At guardian creation, an initial checkpoint object is created and installed. Its Prepared

Action Table, Committing Action Table and Logged Object List are empty. The highest
'_I

50

-"%0

U-.

virtual address, highest UID, and the last log address are assigned their initial values. Thus,

if a crash occurs before the first real checkpoint, the whole log will be read and the stable

state will be reconstructed in virtual memory from scratch.

4.3.3 Quiescence

A checkpoint can be taken only when the recovery system is quiescent. The condition

for quiescence is that no action be in the middle of the commit phase of two-phase commit

as a participant. Recall that during the commit phase of two-phase commit the current

versions of atomic objects modified by an action are installed as base versions, write locks

are released, a commit record is written to the log and a committed message is sent to the

coordinator. -,

Suppose that the condition did not hold and consider the following scenario:

1. Commit record is written to the log, but base versions not yet installed and locks not

yet released.
2. Checkpoint.

3. Base versions installed and locks released.

Ax 4. Crash before object headers reach backing store.

After the crash, no information will be available about the outcome of the action; it will

not be listed as prepared in the checkpoint object and there will be no record of it in the

portion of the log written after the checkpoint. The recovery system will have no way of
"a.

restoring the objects or releasing the locks of an object modified by the action; it does not
know whether the action committed or aborted.

Requiring that no action be in the middle of two-phase commit when a checkpoint is

taken solves the problem. If there is any action in the middle of the commit phase, it is

allowed to finish completing before the checkpoint is taken. This insures that a snapshot of

the stable state consistent with information in the log is checkpointed to the backing store.

This condition for quiescence is easily satisfied. Releasing locks and installing current

versions as base versions does not require additional memory to be allocated. Hence, no

garbage collection could be triggered. At worst, there might be a short delay for page
faults during which processing at the guardian has already been halted. luls, most of the-

.% %-

% 51

,.. ",- -J ,:- .: -- " '-.", ° """" ",." . ,.. I "" ." ' "" """ "' """"""" """"

! ' ' ' " ''" ' " -"° "°! " .. " """-'- a,--'*:.- .: k~ , ,. a* l , ,..;,- ,, ,,-,

Checkpoint

D I Base Current

Prepared

UID Base Current

Current

Committing

UID Base Current

......................."1

Oli 'New Base

Figure 4.4: Updating an Object Header at Commit

time spent taking a checkpoint is spent flushing the dirty pages of physical memory to the r. *h

backing store. Overall, checkpoints are cheap.

4.4 Updating Object Headers

Object headers are updated during the commit phase of two-phase commit for a par-

ticipant in an action. If the steps taken during the commit phase are not ordered correctly,

information can be lost by a crash.

Suppose that the new base versions were installed and the locks were released before the

commit record were written to the log. The system could crash after the installation of the 71
new base versions, but before the commit record reached the log. Now, consider the case

in which the only action to modify an object since the last checkpoint has prepared, but

no commit record has been written to the log for it before a crash. Figure 4.4 shows the

object's state on the backing store at the checkpoint, when the action prepared, and after

the new base version has been installed. In the figure, solid lines show information that is

52

-".5 2 4.0

consistent on the backing store; dotted lines show information that was modified after the I
checkpoint. After a crash, the base pointer in the object header could point either to the

original base version, or to the current version which was being installed as the new base

version at the time of the crash. The recovery system cannot distinguish the two cases.

If the base pointer points to Lhe new base version, it needs to be restored; the new base

version might have been created after the last checkpoint and is not guaranteed to be in a

consistent state on the backing store.

Making sure that the commit record is physically in the log before releasing locks or

installing new base versions solves the problem. The ambiguities as to whether an action %

only if there is a commit record in the log for the action 2.

4.5 Scenarios: Restoring Built-in Atomic Objects

This section shows how the information on the backing store of virtual memory is

related to information in the log after a crash. The state of a built-in atomic object on

the backing store after a crash depends on whether it has been modified by an action since

* the last checkpoint and, if it has been modified, what stage of two-phase commit had been

reached by the modifying action. There are six cases to consider. These are depicted and
discussed below.

There are two diagrams for each case. The first diagram pictures a log showing the

outcome records written to the log for the last action that modified the object before the I
crash. The record labeled "Checkpoint" in the diagram is the last record forced to the

log before the checkpoint. The second diagram pictures the state of the object on the

backing store. Solid lines show information that is on the backing store; dotted lines show

information that migit have been lost in the crash.

1. The last committed action to modify the object committed before the last checkpoint,
and no prepared or committed action has modified the object since the last checkpoint.
The object might have been modified by an action that aborted, including the situation
in which the modifying action was aborted by the crash. In this case all the necessary 2
information required for the object has survived the crash; both the base version

2 Note that two-phase commit already requires that the commit record be physically in the log before the

committed message is sent to the coordinator.

53

0
D %

-P L r , ° °o , • ° o . . . • .Oo . °., • O.• . . o . . ,• . • • . .•, • .. ",° ,%

Na. AN AM rIKN MY1W PU, "[JUJ n. PW WVWV-5'U - Wl 11W W. IIU W* wn PVY ?rV TV Y Vl'

.

and the pointer to the base version in the header will be on the backing store. The
pointers to the current version and the lock in the header could point to inconsistent

information; this information is associated with an aborted action. These fields of the

header need to be cleared during recovery.

The Log

Commit Checkpoint I I I "

Object on Backing Store

UID Base Current Lc

.....

Figure 4.5: Restoring Built-in Atomic Objects: Case 1

2. At least one action that modified the object has both prepared and committed since

the last checkpoint. There are no guarantees on the state of the object header on the

backing store, or on the state of the base or current versions. The new committed -'

base version and the new current version, if applicable, have to be restored from the
log, and the object's header updated to reflect the restoration.

The Log o.

Commit Checkpoint jPrepare j Commit

Object on Backing Store

UID Buse Current L k

........ i V
..................... '

Figure 4.6: Restoring Built-in Atomic Objects: Case 2

3. The last committed action that modified the object prepared before the checkpoint,
but committed after the checkpoint. The new base version, which was prepared at the
time of the checkpoint, is guaranteed to be on the backing store, but the pointer to it 7 ''

might have been lost. Since there is no way of knowing whether the object's header
was written to the backing store since the commit, there is no way to distinguish -1

whether the base version pointer in the object's header points to the old base version
or the new base version. There is also no guarantee that the pointer to the current
version in the object header still points to the version that had been the current

version at the time of checkpoint. After the commit, but before the crash, another

54.
54 '.5 -

% %

.. %%,,-. ..- ,.;....:,.:.:. :...:; : :..;- . -:} ?.'bL. .. :,...; .:-:-: .,.: ,.:.-

action might have obtained the lock on the object and begun modifying it; the pointer
to the current version in the header on the backing store might point to this version
after the crash. The object can be recovered by restoring the pointer to the new base
version from the checkpoint object and clearing the other fields in the header.

The Log

Prepare Checkpoint Commit

Object on Backing Store

II I II f

UID IBae Current Lc

Figure 4.7: Restoring Built-in Atomic Objects: Case 3

4. The last action to modify the object prepared before the last checkpoint, but no
committed or aborted record had been written to the log for it before the crash. The
checkpoint guarantees that the base and current versions are on the backing store.
Because the commit record is forced to the log before headers are updated, it is known
that the base pointer in the header has not been modified. However, abort records
are not forced to the log. The action might have released the lock in the process of
aborting and the abort record never reached the log. In between releasing the lock
and the crash, another action might have obtained the lock and created a new current
version. The pointer to the current version and the action's lock have to be restored
using information in the checkpoint object.

The Log

Object on Backing Store

UID Bee Current Loc.k I]

Figure 4.8: Restoring built-in Atomic Objects: Case 4

5. The only action that modified the object since the last checkpoint has prepared but
no committed or aborted record has been written to the log for it before the crash.
The checkpoint guarantees that the base version is on the backing store. Because the
commit record is forced to the log before object headers are updated, it is known that

''g

55%

. -% % % % ' % "o % %* %. , ,' " . % ", '. % . ." .", . -. ". -. . . - .- ,- . " , -
%S

the base pointer in the header has not been modified. The current version and the

pointers to it and its associated lock might have been modified after the checkpoint.
They can be restored using the information in the prepared record. Note that a data

record for the current version might have been written to the log before the checkpoint.
In that case the current version is on the backing store and the pointer to it is restored
using information from the checkpoint object.

The Log

Commit Checkpoint Prepare ,

Object on Backing Store

UID Base Current Lack %

..................

Figure 4.9: Restoring Built-in Atomic Objects: Case 5

6. The object has been logged for the first time after the checkpoint. There are no
guarantees about the contents of the object header, or the base or current versions;
they have to be restored from the log. The object header itself might have to be
recreated. If the virtual address of the object's header is less than the highest virtual
address allocated at the time of the checkpoint, then the object header was created
before the checkpoint. Otherwise, the object header has to be recreated.

The Log
II I Il I

Checkpoint ase-commi

Object on Backing Store
.......................

UID Base Current Lock

........................ ,

...... *,........, :

Figure 4.10: Restoring Built-in Atomic Objects: Case 6

4.6 Garbage Collection

A method for atomic garbage collection was presented in the last chapter; it needs to I
be integrated into the proposed recovery system. The strategy for dealing with "stop the

56

W-Il

world" garbage collection is to use two recovery algorithms: the normal algorithm for a

soft crash and a special algorithm for a crash during garbage collection. The outline for

atomic garbage collection presented in the previous chapter is repeated here with details

appropriate to the recovery system inserted.

1. Stop all processing at the guardian; make sure the recovery system is quiescent. The
time waiting for quiescence is short and no memory needs to be allocated while waiting.

2. Take a checkpoint. The checkpoint allows the recovery algorithm for atomic garbage
collection presented in the last chapter to be used. It also limits the portion of the log
that needs to scanned to recover from a crash after garbage collection has completed.

3. Set a garbage collection flag and force it to the backing store. Because the backing
store survives a soft crash, virtual memory is an appropriate place for the flag. Like
the pointer to the checkpoint object, the flag is kept at a known location in virtual
memory. The page on which it resides is forced to the backing store to insure that an
indication that garbage collection is in progress survives a crash.

4. Use atomic garbage collection to copy the stable state and the checkpoint object to
to-space. Note that the checkpoint object is copied to to-space as part of atomic
garbage collection because it is accessible from the stable root. The virtual addresses
in it are translated to point to the corresponding objects in to-space by the copying
algorithm. a

5. Write all dirty pages of to-space to the backing store.

6. Reset the garbage collection flag and force it to the backing store. Note that this has Ir
the side effect of installing the to-space version of the checkpoint object. The flag is ',W
forced because it must be on the backing store before the first outcome record reaches 0
the log after garbage collection. :1

If a crash occurs during garbage collection, the recovery algorithm from the previous

chapter is used. When it is finished, all dirty pages of to-space are written to the backing

store and the garbage collection flag is reset and forced to the backing store.

If a crash occurs after garbage collection, the normal recovery algorithm does not need I.1
to do anything special to account for the movement of objects in memory during the garbage

collection. Records written to the log after the garbage collection contain the new virtual -

addresses for the objects to which they refer. The virtual addresses in the checkpoint object

were translated to new virtual addresses when it was copied to to-space.

57

S%

% % 0

% % %.

..-

4.7 Recovery of Built-in Atomic Objects

This section describes the algorithm for recovery from a soft crash. The purpose

of recovery is to restore to virtual memory all the information required by a guardian
.. 5

to continue normal processing. Included are the stable state, information about actions

that were prepared at the time of the crash and information required to create new stable

objects. Information for actions that were prepared is required both for actions for which the

guardian was a participant and for which the guardian was the coordinator. Knowledge of

the highest UID assigned so far to any stable object is required to create new stable objects. "

The stable state is recovered using a combination of information left on the backing store

before the crash and in the log. The other information must be recovered from the log. The

method for processing the log is similar to the one used by the current recovery system.

The presentation of the recovery algorithm is based on the presentation of that method[22].

When recovering from a soft crash, the recovery system begins by recreating the virtual

address space of the guardian using the guardian's backing store from before the crash.

Then the garbage collection flag is checked. If garbage collection was in progress, recovery .-'

proceeds using the recovery algorithm outlined in the previous chapter. When that algo- 6

rithm completes, the garbage collection flag is reset. Garbage collection was preceded by

,5 a checkpoint and no changes were made to the stable state between that checkpoint and

the crash. Thus, no records need to be processed from the log. However, information still

has to be reconstructed about actions that were prepared or committing at the time of the

crash.

Whether or not garbage collection was in progress, recovery then proceeds by construct-

ing a table, called the CPVT or checkpointed prepared version table, using the Prepared 6

Action Table and the Logged Object List in the checkpoint object. The CPVT maps the

virtual address of an object header to the virtual address of its current version, for objects

that were written to the log for an action that had prepared or had begun writing object

versions to the log as part of prepare at the time of the last checkpoint.

Recovery continues by rea-ing and processing the log backwards from the last outcome

record written before the crash until the first outcome record written after the last check- :.r.5

point. Then it processes the Prepared Action Table and the Committing Action Table from

5" 58

,-..

V' P d .1 ," ' t ' '.,, _. _- .- . % . . -. -- •,% .• . " • . - " " - " % .- .-.,,.- .. % . - % . .. % _ % .- ". ", .% .. , ." j •,.

? ';): .:.- .-.:€-: :.,Z- -- 4; " ;€:: :-: ":" :':--:,"..", ",-;-..............,.......-..-.."....'..-......,.....-;.-.....'.... -.' 4. '.-".

the checkpoint object. In the case of a crash during garbage collection, only the tables in

the checkpoint object are processed. Each outcome record and entry in a checkpoint table

is processed to restore object versions to virtual memory, restore locks, reconstruct informa-

tion for two-phase commit and compute the highest UID in use based on the information

extracted from the previously processed outcome records and the CPVT.

The recovery system organizes the information it needs from the outcome records in

three tables. The tables are empty at the beginning of recovery, and are built up incremen-

tally.

1. The PT, or participant action table, maps action identifiers to participant action
states. The three possible states are prepared, committed, and aborted. If prepared,
the entry contains the set of objects modified by the action. The set of modified
objects is called the MOS.

2. The CT, or coordinator action table, maps action identifiers to coordinator action
states. The two possible states are committing and done. If committing, the entry
contains a list of guardian identifiers of the participants.

3. The OT, or object table, maps virtual addresses of resilient object headers to object
states. An object state consists of a pair of properties. The first property can take on
the values old or new, depending on whether the object was created before or after
the last checkpoint. If the state has the new property, the entry contains the new
virtual address of the object's header. The second property can take on the values
empty, partial or restored, depending on the degree to which the object's value has
been restored. The empty property indicates that a header has been created for the
object, but the object's value has not yet been restored. It is used when a reference
to an object created after the last checkpoint is encountered during recovery before
the object itself has been restored. New is the only value for the first property that is
possible with empty. The partial property indicates that the object's current version
has been restored. The restored property indicates that the object's base version has
been restored. Because the log records are processed in the opposite order in which
they were written, the sequence of properties possible for an entry's state is empty,
partial, restored3 .

Computing the highest UID in use is simple. Any object that has been made accessi-

ble since the last checkpoint will have a base-committed record in the portion of the log

processed during recovery. Therefore, it can be calculated by taking the maximum of the

highest UID in use at the time of the checkpoint and the UIDs for objects for which a
3 An implementation could use just two values for the second property - partial and restored. The third I

value, empty, has been introduced for the sake of clarity.

* 59

,."= r~

% , **

* .i

base-committed record is processed'.

After the processing of the checkpoint object is complete, the graph of stable objects

is traversed starting with the stable root. This traversal serves two purposes: to clean up

object headers and locks for built-in atomic objects that were accessed by actions aborted

by the crash, and to check that the recovered stable state is consistent. Consistency of the

stable state means that all objects encountered during the traversal have valid headers and

all pointers encountered during the traversal point to objects that are in a consistent state.

Note that, for recovery from a crash during garbage collection, the checks for consistency

and the clean up of object headers could take place during the traversal of the stable state

required to reconstruct to-space. For the sake of clarity, the algorithm has been described

with two independent traversals of the stable state.

After recovery, the information in the PT for actions in the prepared state is used by

the Argus system to complete two-phase commit for actions for which the guardian was

a participant. The information in the CT for actions in the committing state is used for .. ,:

actions for which the guardian was the coordinator. The OT is discarded at the end of

recovery.

There are several subroutines that the recovery system uses to restore object versions

from the log. Base restore determines whether the most recent base version for an object

has already been restored; if not, it restores the base version. Prepared restore restores the

current version of an object. Both use restore version, which restores a logged version to 0

virtual memory.

All three subroutines need to determine whether an object header is on the backing ..1
store given its virtual address. The virtual address of the object's header is compared with

the highest virtual address in use at the time of the last checkpoint. If it is less, the header .'.

is on the backing store. If it is greater, the object was created and made accessible since

the last checkpoint.

Base restore restores the base version for an object if necessary. Its input is a <virtual --

address of object header, log address> pair. The object is looked up in the OT. There are

'The current recovery system assigns UIDs only to resilient objects that are stable. The UIDs are assigned
when the object becomes accessible. Assuming the same implementation, the highest UID in use would be ,.
the UID for the object recorded in the last base-committed record written to the log before the crash.

60

%

...

.

. .-. .. *-..'..

,.o + "• *, " "+-o' °-". - . ". - - ".: - ' "- '" -"- "o . % **% * -. o ." . -* " -.... ' % V V - "• . " ." . "" "•"".

three cases:

1. There is no entry in the OT. The virtual address of the object's header is checked to
see if the header is on the backing store. If it is, an entry is inserted in the OT in
the <old, restored> state. If not, an empty object header is created for the object
and an entry is inserted in the OT in the <new, restored> state. In both cases, the
base version of the object is restored using restore version, and a pointer to the base
version is placed in the object's header. The locks and the version stack in the object's
header are cleared.

2. The object's entry in the OT has the partial or empty property. The base version of
the object is restored using restore version, and a pointer to the base version is placed
in the object's header. The entry in the OT is changed to have the restored property.

3. The object's entry in the OT shows that its state is restored. The object's most recent
base version before the crash has already been restored. Nothing is done.

Prejrred restore is used to restore the current version of an object, for an object that was

modified by an action that was prepared at the time of the crash. Its input is a <virtual

address of object header, log address> pair. The object is looked up in the OT. There are

two cases:

1. There is no entry in the OT. The ";rtual address of the object's header is checked to
see if the header is on the backing store. If it is, an entry is inserted in the OT in the
<old, partial> state. If not, an empty object header is created for the object and an
entry is inserted in the OT in the <new, partial> state. In both cases, the current
version of the object is restored using restore version, a pointer to the current version
is placed in the object's header, and the action is granted a write lock.

2. The object's entry in the OT shows that its state is <new, empty>. The current
version of the object is restored using restore version, a pointer to it is placed in the
object's header, and the action is granted a write lock. The e.itry in the OT is changed
to have the partial property.

Restore version restores an object version to virtual memory if necessary. The input

to restore version is a <virtual address of object header, log address> pair; its output is

the address in virtual memory of the restored version. The log address is the address of

the object version to be restored from the log or the log address recorded in the checkpoint

object. The latter case indicates that the checkpoint object is being processed; all versions

to which the checkpoint object refers are on the backing store. The log address is compared

with the log address recorded in the checkpoint object. There are two cases:

61

S *%.
P. Its

%b % % % %'

1. The log address is less than or equal to the log address recorded in the checkpoint -5.

object. The object version to be recovered is intact on the backing store. Its virtual
address is retrieved from the CPVT.

2. The log address is greater than the log address recorded in the checkpoint object. The
object version has to be restored from log. Restore version unflattens and copies the "p.
logged version to virtual memory. As it does so, it examines the version for <virtual
address of object header, UID> pairs, references to resilient objects copied to the log
independently. The virtual address of the object header has to be checked to see if the
header is on the backing store. If it is, the address is left unchanged. If not, the OT
is searched for an entry for the object. If the object is in the OT, then its entry in the
OT has the new property and contains the virtual address of its reconstructed header.
Otherwise, an empty object header is created for the object and an entry for it is
inserted in the object table in the <new, empty> state. Once all contained references
have been processed and restored, restore version returns the virtual address of the
restored version.

The recovery algorithm for built-in atomic objects can now be described.

1. Consult the guardian manager to find out the location of the backing store for the
guardian on secondary storage, the mapping of virtual addresses to backing store
blocks and the location of the log on stable storage. Recreate the virtual address space
of the guardian. Check if the garbage collection flag is set. If it is, recover the stable
state in to-space using the recovery algorithm from the previous chapter. (Recall that
the checkpoint object is transported to to-space and its addresses translated as part,of that algorithm.) Reset the garbage collection flag.

2. Construct the CPVT from the checkpoint object. *.,

3. Create an empty PT, OT and CT. Make note of the highest virtual address and
highest UID in use at the time of the checkpoint from the checkpoint object.

4. Read the log backwards starting with the last outcome record in the log and ending "1
with the first outcome record written after the checkpoint. (This portion of the log is
empty if this was a crash in the middle of garbage collection.) Process each outcome
record as follows:

(a) Done record. Extract the action identifier from the record. Insert a done entry I
in the CT for the action identifier appearing in the log record.

(b) Committing record. Extract the action identifier from the record. Look up the
action in the CT. If its state in the CT is done, then ignore the record. Otherwise, .
insert an entry in the CT for the action in the committing state with the list
of guardian identifiers of participants in the action taken from the committing
record.

(c) Committed record. Extract the action identifier from the record. Insert an entry
in the PT for the action in the committed state.

62

-,4

%, ?

(d) Aborted record. Extract the action identifier from the record. Insert an entry in
the PT for the action in the aborted state.

(e) Prepared record. Extract the action identifier from the record. Look up the
action in the PT. There are four cases:

i. The action's state in the PT is committed. For each <virtual address of
object header, log address of version> pair in the prepared record, do a base
restore.

ii. The action's state in the PT is aborted. Do nothing.

iii. The action is not in the PT. For each <virtual address of object header,
log address of version> pair in the prepared record, do a prepared restore.
Insert an entry in the PT for the action in the prepared state with a MOS
constructed from the prepared record.

iv. The action's state in the PT is prepared. (A prepared-data record for the
action has already been processed.) For each <virtual address of object
header, log address of version> pair in the prepared record, do prepared
restore. Add each object listed in the prepared record to the MOS in the PT
entry.

(f) Base-committed record. Recompute the highest UID in use by taking the max-
imum of the UID in this record and the highest UID so far. Do a base restore
for the <virtual address of object header, log address of this log record> pair.
Insert the UID in the reconstructed object's header.

(g) Prepared-data record. Extract the identifier of the action from the record. Look
up the action in the PT. There are four cases:

i. The action is in the PT in the committed state. Do a base restore for the
<virtual address of object header, log address of this record> pair.

ii. The action is in the PT in the aborted state. Do nothing.

iii. The action is not in the PT. Do a prepared restore for the <virtual address
of object header, log address of this record> pair. Insert an entry in the PT
for the action in the prepared state with this object as the only entry in its
list of modified objects.

iv. The action's state in the PT is prepared. (A prepared-data record for the
action has already been processed.) Do a prepared restore for the <virtual
address of object header, log address of this record> pair. Add the object
to the MOS in the PT entry.

5. Process the checkpoint object.

(a) Look up each action in the Prepared Action Table in the PT. There are four
possibilities:

i. The PT shows the action has committed. For each object in the object list W

for the action, do a base restore for the <virtual address of object header,
log address in checkpoint object> pair.

ii. The PT shows the action has aborted. Do nothing.i

63

• %% %

- . ; (%% '= -".n
' '1

.% % "..% " " o , , ' .%.' .. % ' -. ' ' ".- o. '. -o " " .- . o .'.'., . . -. -, - % -.- , .% -%'

iii. The action is not in the PT. For each object in the object list associated
with the action in the Prepared Action Table, do a prepared restore using
the <virtual address of object header, log address in checkpoint object> .
pair. Insert an entry in the PT for the action in the prepared state with a
MOS constructed from the object list.

iv. The action's state in the PT is prepared. (A prepared-data record for the ac-
tion has already been processed.) For each object in the object list associated -
with the action in the Prepared Action Table, do a prepared restore using the
<virtual address of object header, log address in checkpoint object> pair. - -

Add the object to the MOS in the PT entry.

(b) Look up each action in the Committing Action Table in the CT. If the action
appears in the CT, then its state is done and nothing is done. Otherwise, read
the committing record for the action from the log using the pointer to it in the
Committing Action Table. Insert the list of guardian identifiers of participants
from the committing record in the CT in an entry for the action.

6. Starting with the stable root, traverse the graph of accessible stable objects. As each
object is encountered check that it is consistent. A consistent object has a valid
descriptor and each of its contained objects is consistent. If an inconsistent object
is found, restart recovery using the procedure for a hard crash (explained below.)
As each header for a built-in atomic object is encountered, mark it accessible (to
recompute the Accessibility Set) and look it up in the OT. There are three possibilities:

(a) The object's state has the restored property. The object and its header have
already been restored, do nothing.

(b) The object's state has the partial property. The current version of the object
has been restored by recovery together with a lock for the prepared action; do
nothing. The last checkpoint guaranteed that the object's base version and the
base version pointer in its header are intact.

(c) The object is not in the OT. Clear the pointers to the current version and the
lock in the object header. The last checkpoint guaranteed that the object's base
version and the base version pointer in its header are intact.

7. The PT, CT and the highest UID in use are returned to the Argus system.

The procedure for recovery from a hard crash is similar to the recovery algorithm out-

lined above. The major differences follow. The entire log is read during recovery. An object

is identified by its UID rather than the virtual address of its object header. Object versions

are always restored from the log. The only purpose served by traversing the stable state at

the end of recovery is to recompute the Accessibility Set.

64

%J

UID Base Current

Figure 4.11: Mutex Object

4.8 Recovery of Mutex Objects

A recovery method that does not require the whole log to be scanned after a crash

must be devised for mutex objects. A requirement for recovery similar to the one for built-

in atomic objects is: a mutex needs to be recovered from the log only if it was written to

the log since the last checkpoint. A shadowing representation, similar to the one for built-in p.

atomic objects, whose modification is coordinated with two-phase commit, will allow this

requirement to be met. V

4.8.1 Representation of Mutex Objects

A mutex object is represented by a header; the header contains the UID of the object, V

a pointer to the object's base version and a pointer to its current version. Figure 4.11

illustrates the representation. All operations of the mutex type generator modify or observe

the current version. The base version exists only for the purpose of recovery. It is a copy of

the current version made at the last time the mutex was written to the log by a preparing

action, a copy that could be recovered in the event of a crash. The pointer to the new base

version is installed at prepare. Other information is required in the header to keep track of

mutual exclusion, but it is volatile and its format is not important to recovery.

4.8.2 Writing Mutex Objects to the Log

a.N.

There is a special outcome record for logging mutexes called the mutex record. Fig-
ure 4.12 illustrates it. Its content is similar to that of a base-committed record. The mutex

record contains the UID of the mutex, the virtual address of its object header, and the

mutex value. The log pointer points to the previous outcome record written to the log. A

mutex version is flattened when written to the log with the exception that references to

other resilient objects are preserved.

65

a,'p i i
.,. x ". .. % % • -,,, •.'% % . " V . % % .."% % %. % %.. -,., •o% % , VV. -*. .\ o ..' .,. •. " .- o.% .,"*-

% ~---%

UID

virtual address of object header

mutex value

log pointer

Figure 4.12: Format of Mutex Record

According to the recovery semantics for mutex presented in the chapter on Argus, the

value recovered for a mutex must be at least as recent as the value written to stable storage

on behalf of the last action that prepared which called changed for that mutex. This

semantics is achieved by writing a mutex record to the log for an action that has called

changed after the call, but before the action's prepared record is written to the log. Thus,

the value recovered for a mutex can be the value contained in the last mutex record written

for it to the log. This behavior is easily achieved using outcome records. All outcome

records up to the checkpoint are processed during recovery. Since the log is processed in

reverse order, the first outcome record processed for a mutex contains a value that can be

recovered.

The procedure for logging a mutex object follows. When an action that has made a .. ,

mutex accessible from a stable variable or called changed prepares:

1. Seize the mutex.

2. Make a copy of the current version of the mutex and install the copy as the base
version. The base version is a copy of the current version in which all contained non-
resilient objects have been copied. If the base version shared non-resilient objects with
other objects in the guardian, the value for the base version could be altered after its
installation. In that case, the system could not guarantee that the base version wouldremain in a consistent state on the backing store after a checkpoint and a subsequent '(,

crash.

3. Construct a mutex record containing a flattened copy of the current version and write Iit to the log. .

4. Release the mutex.

Given the shadow representation for a mutex object and the above procedure, a check-

point guarantees that the base version and the pointer to it in the header survive in a

consistent state on the backing store as long a mutex record has not been written to the

66

%, . ,,, J - -,,. . .,,., . . ,,. - - ,.. . - ,,,.

log since the checkpoint. Seizing the mutex insures that the version of the mutex written

to the log and installed as the new base version is consistent.

The order of the steps taken at prepare is important. The new base version is installed

before the record is written to the log to insure consistency between the log and the backing

store at a checkpoint. The last base version installed for a particular mutex must always be

a version of the mutex that could be recovered if the guardian were to crash. Given the new

semantics for mutex, it does not do any harm to create new base versions more frequently

than necessary. Note what would happen if the two steps at prepare were reversed and
a checkpoint were taken before the base version were installed, but after the record were

written to the log. In that cage, the mutex record would not be in the portion of the log

scanned after a crash and the correct mutex version might not be recovered.

Note that the shadowing representation requires that two versions be in virtual memory

for a given mutex at all times. If the compiler and linker for Argus could enforce the

restrictions that the contents of a mutex be accessible only while it is seized and that no

non-resilient objects contained in a mutex be shared with other objects in the guardian,

the period of time during which two versions of the mutex are in virtual memory could be

shortened. In that case the current version could be directly installed as the base version

during prepare without making a copy. Making the copy could be delayed until the next

time the mutex were seized. Other alternatives requiring less storage in virtual memory are

discussed in the next chapter.

4.8.3 Recovery of Mutex Objects

The changes required to the recovery algorithm presented for built-in atomic objects

to incorporate mutex objects are discussed below.

The OT is extended to contain mutex as well as built-in atomic objects.

There is one more type of outcome record to process. When a mutex record is rea(l

from the log, the recovery system calls a subroutine named mutty restore The s ihrmitit I

decides whether the most recent base version of a mutex object hts hee. r-.t,,r,, if w,.f

it restores the base version. Its input is a -virtual address of object h,;ibir. ,rm -I,

address> pair. It looks up the object in the OT. There are three ast.4

1. There is no entry in the OT. The virtual address)f the th,'jot .l,.r st-k- I

67

% %
L o , 11..' :..,, ,""""' -='' .""" .," ." , ." " ,". . .". -" ".". " - --

to see if it is on the backing store. If not, an empty object header is created for the •"

object and an entry is inserted in the OT in the <new, restored> state and the virtual P

address of the header is inserted in the entry. If it is, an entry is inserted in the OT.:..
in the <old, restored> state. In both cases, the base version of the object is restoredi-...

i F.

using restore version; and a pointer to the base version is installed in the object's. -
header. •.

2. The object's state has the empty property. (A data record referencing the mutex has aV

already been processed and the mutex was created since the last checkpoint.) The~i''

base version of the object is restored using restore version, and a pointer to the base
version is installed in the object's header. The entry in the OT is changed to have the
restored property.

3. The object's state has the restored property. Do nothing. The most recent version for I
this mutex has already been restored•.-.

When the graph of accessible stable objects is traversed, each mutex object is processed .'

as follows: a copy of the base version in which all contained non-resilient objects are copied '

is made and installed as the current version. This step is expensive. Its cost coulhd be•

• ~p -

amorto ed over the unn ing te. Ifar t, an ptdyaying oe header i te frte

the first time it is seized after the crash. In that case, a flag would have to be set n the

mutex headers during the traversal of stable objects warning that a rrent ersion has to

be installed before the mutex is used. %*: :

The last change concerns both the log and the recovery algorith e obecri refstrewe ,,

a resilient object in a data, basepcommitted, prepared data, or itex reisal r,ld w nte , oje

tagged with the type of the object being referencedi mutex or buhlt-in at,,rna, A ,.s

is enough to hold the tag. Mutex headers are not necessarily the same s i.) h

for built-in atomic objects. When a rerence to a resilient e t t hat has poin rto athe be

since the checkpointlled i n a logged object verson being rest,,red t,, vis c;an to,., rh t

restore version, the recovery system has to know what sze header p et all,,,ty, f..r it ii, it, i,,i

memory. The alternative is for the recoveyroer rn to noAthin .,, a ost. ecen -v r

the larger header

sThe p int asr the thcr cerrnnt verrso.n Thi tis ep t eon
be. before.the<,.utex is.used.. , -...

.,,e ,..°~e'. he last. ' change conce• rns b,"oth the. l,-og-...•.'. .• and te reover algritrr ,vr r-.f-,.riE to ..

4.9 Housekeeping the Log

A guardian's log contains a history of the computation at the guardian since it was

created. Though the checkpoint mechanism is being used to shorten the time for recovery

after a soft crash, it is still desirable to reclaim the storage being used by the log and to

keep the time for recovery from a hard crash reasonably short.

A method for shortening the log by creating a new log containing a snapshot of the

stable state is presented in a paper on the current recovery system[22]. While the guardian

continues normal processing, a snapshot of the stable state is constructed by traversing

the stable state in virtual memory, and writing it to a new log. Information written to

the old log since the snapshot was initiated is transferred to the new log, translating log'I.

addresses as appropriate. When all pertinent information has been transferred to the new

log, processing at the guardian is suspended and the old log is replaced by the the new log

in an atomic step.

An observation about the structure of the log allows a modification to the procedure

presented above in which it is not necessary to install a new log or copy records from an old

log to a new log. Remove from consideration all data records that were written to the log by

actions that aborted before they finished preparing; these records are never needed. There

are prefixes of the resulting log for which all outcome records in the prefix were written e.A

to the log on behalf of actions that completed. More specifically, every data record in the

prefix has a prepared record that points to it. For every prepared data record in the prefix,

there is an associated committed or aborted record. For every committing record in the

prefix, there is an associated done record. The observation is that the largest such prefix I
at, the tirne a snapshot was initiated can be deleted from the log and replaced by a new log

se=gment rontaining the snapshot -A.--

new representation is required for the log to make use of the observation Every

Ih, , 1 41 ,f 1w stegriients a prefix and an active portion When records are written

, I r, i'r g ri, rrtial pr , , sinv. they are always appended t,, the active port ion The

y.;9..-.s Tt , ' rt %rI, rt it i ir,'' t 9 -, e, r 't, r , ,r p, ' tt'fii ;i t, ('7t 19, rr()r ill it' active

f s, , r,-f 1r. , i r,', ,r,i I tI , ir,.-i

| , , r %I+ " i k,' I.,' f h o, ,1-#, r%;ii i ,ii f dl1. \& , "I ik,' i .t , k ; ,,, i t 11114' 1ft ,

e ' . 7

5-".
. . . %-0

recovery system is suspended during the checkpoint, calculate the log address of the earliest

record written to the log for a committing action for which the guardian is the coordinator,

or referenced by an action that is prepared or has already written data records to the log

as part of prepare. Install the checkpoint. While the guardian continues normal processing,
traverse the stable state and write a snapshot of it to a new log prefix on stable storage.

Once the snapshot completes, replace the prefix of the log by the new prefix and discard

from the active portion of the log all records preceding the log address calculated in the

earlier step.

The snapshot can use modified versions of the base-committed and mutex records. No

virtual addresses need be recorded in the records; the checkpoint taken at the outset of *.

the snapshot insures that recovery from a soft crash will never need to reconstruct object

versions from the snapshot. Also, it is not necessary to chain the records together using log

pointers; all records used in the snapshot are outcome records.

For recovery from a soft crash, it is not necessary that the whole log be on-line on

fast storage (e.g., disk). Assuming that most crashes will be soft crashes, the snapshot

mechanism can be modified to write the new log prefix directly to a less expensive, and less

accessible medium such as magnetic tape.

%I

70.-'''

% %

,"1

- "e.., : ..e " ', ." ,.". ,-". ".7. "" "'-" "" .""."". "" ""'" ."''""e"'"'"'",".".".',".".' " " " " -" '" '""'- "'"""-'-'" -"'" @"-

Chapter 5

Alternatives

This chapter discusses several optimizations and alternatives to the recovery scheme

presented so far. The first section suggests two ways to decrease the time to take a check-

point. The second section presents a special case for which the storage required for a mutex

can be reduced. The third section outlines an alternative way to locate resilient objects in

virtual memory after a crash and compares the alternative to the recovery scheme presented

in the last chapter. Finally, the fourth section discusses an alternative for atomic garbage

collection that is faster, but requires more storage.

5.1 Cheaper Checkpoints

All processing is halted at a guardian while a checkpoint is taken. It is important that

this delay be short, especially the delay for the checkpoint preceding an atomic garbage

collection. Almost all of the delay is due to the time required to write the dirty pages of

physical memory to the backing store. Two ideas are presented for shortening the delay by

decreasing the number of pages that have to be written.

The first idea is to keep track of the pages of virtual memory that have stable objects

on them. Define the Stable Page Set (SPS) to be the set of virtual memory pages on which

there are stable objects. At a checkpoint, only the dirty pages of physical memory that are
als i th SS nedto be written to the backing store. There may be a large amount of

volatile state in the heap of a guardian and there is no reason to write it to the backing .

store during a checkpoint. Ile

Maintaining the SPS is similar to maintaining the Accessibility Set. The SPS can contain

71

-s .y,:.. : :, ',- .y :..-.:.. <-,..::,- .. ::..:: - :: ,... :-:. -.........-.....-..... :...:...,..- 4-..

a superset of the pages that contain stable objects. The SPS is initialized when a guardian

is created. During normal processing, it is updated every time an action prepares. At each F,

prepare, the SPS is augmented by the pages on which newly accessible objects reside, the %. S

pages on which current versions for accessible built-in atomic objects that were modified by

the action reside and the pages on which the new base versions for accessible mutex objects

reside. Membership in the SPS is recalculated at every garbage collection. Recalculating

membership for the atomic garbage collection algorithm presented in chapter 3 is easy.

When that algorithm completes, the portion of virtual memory in to-space that contains

stable objects is contiguous. After a crash, the membership in the SPS can be recalculated

during the traversal of the stable state that repairs object headers.

An efficient implementation of the SPS would be to use a bit of the page table entry for

each page of virtual memory to indicate membership in the SPS. Then at a checkpoint only

-' those pages whose entries have both the SPS and dirty bits set are written to the backing

-" store.

A second way to shorten the time for a checkpoint is to use the idle time of a guardian

to keep the number of dirty pages low. A background process can be set up in the guardian

that runs at the lowest priority. The background process continuously scans the guardian's

page table writing dirty pages to the backing store.

5.2 Less Storage for Mutexes

There is not much experience with the use of mutexes; but from the known examples[26]

it is probable that mutexes will often be large. The scheme presented in chapter 4 doubles

the storage for accessible mutexes by requiring that an extra mutex version be kept in

virtual memory for the purpose of recovery. This is large space requirement for information

that is not required by a normal running guardian. A simple optimization for mutexes that

contain no resilient objects is presented in this section. Such mutexes might be used by a

program that needs objects to be resilient, but not necessarily atomic. Ilowever, there Is

not yet enough experience writing programs in Argus to determine hIow frequent Iv nit itexs I
are used in this way. ...?

Normally an object version that wa written to the log lefore the hist ;arlagoe -11c,', ti,

72
% %

% A

cannot be recovered from the log after a crash because it could contain references to resilient

objects that moved during the garbage collection. However, an object version that does not

contain any references to other resilient objects can always be recovered from the log no

matter when it was written. This observation suggests a strategy for the recovery of mutexes

that contain no resilient objects. For such a mutex, the log address of the mutex's base

version is recorded in its header in place of the pointer to its base version in virtual memory.

After a crash, these mutexes can be recovered when the stable state is traversed to repair

object headers.

The types of the objects that a mutex contains usually will be determined at compile

time; at the latest the types are discovered when the guardian is configured. Appropriate

code to treat the special case can be linked into the guardian at that time.

5.3 Locating and Identifying Stable Objects

Choosing a method for identifying stable objects and locating them in virtual memory

after a crash was a key decision in the design of the recovery system. Using the method

described in the previous chapter, a map is written incrementally to the log; all resilient N

,. objects are referenced in the log using <UID, virtual address of object header> pairs. An

alternative would be to maintain the map of UIDs to virtual addresses in virtual memory.

Virtual memory is a reasonable place to keep the map; the map is needed only in the

event of a soft crash and virtual memory survives a soft crash. In order for this approach

to work, a representation is needed for the map that will survive a crash in a consistent
r%,

- . ..

%" state on the backing store. A similar map called Object Header Storage was used by the

Swallow object repository[21. Ilowever the design of the map for Swallow was considerably

more complicated than what is presented below because it had to support a wider range of

operations.

This alternative scheme for finding resilient objects after a crash was rejected hecauqe"

,of the extra (,o t it ittipset for garbage c(llection tloiwever, its |escriplton is ti i eh t,,

0,4)w t he rang -,)f ,I t ifins t hat w a e.. 1xp h(red T hl e reritai ile r f tII, % f 1, 11 pr, t..-.#=ti the -

,lt,rr,at I o " irst Ie rtqiiirftYwti t,4 f,,r thu, ,Ije, t inre I, I ir I i , .r 1 ,r,,,tt d, \tl

,fi $ lvl , ' t, I,,, f-t i 1. 1 1 1r , , -4- r#,,- I i Irit , to tit i -h (.kw i :, ¢ ! r A i) t I, ' , lt I f , ,

7 3

* 0%

Ve A '.'

,jijWiW.rWirW rWWWuI.-U ii-w y-w w- - V-

mk. "Vr

ering the map after a crash. It is shown how the use of the map can reduce the storage

requirements for mutexes. Finally, the object map scheme is compared with the recovery

scheme presented in the last chapter. P

5.3.1 Keeping a Map in Virtual Memory

A map, used in place of the Object Table during recovery, is stored in virtual memory

at all times. It is called the Accessible Object Map or AOM. The AOM maps the UID of

a stable object to the virtual address of the object's header and an object state. There is

an entry in the map for every resilient object accessible from a stable variable. Like the "S

accessibility set, the AOM might contain entries for objects that are no longer accessible.

The map is maintained during the normal running of a guardian, but only used after a

crash.

The object state stored in an entry is meaningful only during recovery. It can take on

four values not-recovered, empty, partial or restored. Empty, partial and restored retain the

meaning they had for the OT. Not-recovered means that the object has not been recovered

since the checkpoint. The not-recovered value allows the recovery system to determine which

object headers have not yet been restored when it traverses the stable state at the end of

recovery. In the first recovery scheme, the OT only had entries for objects restored during

recovery; the not-recovered value was implied by the absence of an entry in the OT. This

does not work for the AOM because the AOM has entries for all accessible objects.

Under the recovery scheme using the AOM, the contents of the log records are changed.

No virtual addresses are recorded in the log; resilient objects are identified solely by their I
IUIf in the log. When a Ill) is read from the log during recovery, the AOM is searched for

its entry to find the virtual address of its object header

The operations that the AOM must support are a subset of the operations normally im-

plemented by a map type The restricted number of operations and the restricted contexts

in which they can be called allow a simple implementratioln of the A(\1 The operations -

needed are insert, lookup, modify state and rebuild The insert operation adds a new map-

ping to the table, it is called by the recovery system during the prepare phase of 4iw-pha.e"

rc mniiTn t when a re'tthent ,t"jet t b,.oes view Vly ac cesilhe r u ring rvt fv)%er ,, hrin a r'ference

7 '

, ' :*;- ,*, -. , .

I...

to a resilient object created since the last checkpoint is processed. The lookup operation

is called only during recovery to find the location of an object in virtual memory given its

UID. The modify.state operation is called only during recovery to update the object state

associated with an entry. The rebuild operation is combined with garbage collection to

remove entries from the map for objects that are no longer accessible and to associate a

new virtual address with each UID.

5.3.2 Implementation of the AOM
RUJ

The AOM must be implemented such that it can be recovered in virtual memory after

a crash before the log is scanned. It is implemented using a hash table for which space is

allocated in the same heap used for other objects.

Figure 5.1 illustrates the representation used for the AOM. The hash table is a sequence

of bucket pointers. Each pointer points to the head of the linked list of entries in the bucket.

The pointer is nil if the bucket is empty. Each entry in the linked list contains a UID, the

associated object state (not-recovered, empty, partial, or restored), the virtual address of

the object header, and a pointer to the next entry in the list'. That pointer is nil if the

entry is last in the list. A hash function on the UID determines the bucket in which an

entry is inserted. The lookup and modify-state operation work in the obvious way. The

insert operation always inserts the new entry at the end of the linked list to which the hash

function directs it.

UWhen a checkpoint is taken the AOM must be in a consistent state. Consistency means

that the linked list in each bucket is complete. One way to insure consistency is to make jl
sure that a checkpoint is not taken while an insert operation is in progress.

Objects move during garbage collection; hence, the virtual addresses of object headers

in the entries in the AOM need to be updated. Copying the AOM to to-space provides an

opportunity both to update the entries and to delete entries for objects that are no longer

accessible. The AOM is copied using a special algorithm with knowledge of the AOM's

representation instead of the usual copying algorithm used for atomic garbage collection.

'Since only two bits are needed to encode the object state, an implementation does not need to use a
whole memory word to hold the state. Bits from the memory word holding the UID or virtual address can
be used instead.

.

%S
.. 75

". *% . . "". , .-. "" ". . "".%. ." . """""°"""- % .'" "". . "% % %. ,, :z..""" - .; "," -: '"" : - - " ".

MR .- J Ir . -- M iv IWV WJ1 N UW. W IW W Y' '- y, '' r I I

nil o,!

The AM tit coidanatoiaoi abg leto afte thtbl tt hsbe

c u.,thw oi

• ,~.,,, ,-

tp eanzo eFigure 5.1: Representation of the AOM lt ehu t

The AOM is copied as part of atomic garbage collection after the stable state has been ,,

copied, but before the dirty pages of to-space have been written to the backing store.....

The algorithm follows. First, space for the sequence of bucket pointers is allocated in-.e

P ~ ~to-space equal in size to the sequence in from-space. Then the linked list int each bucket in q,

from-space is traversed. Each entry is processed on the basis of the virtual address of the

object header in it. There are two cases:

1. It is the address of the descriptor cell for an object header that contains a forwarding
address. The corresponding object is still accessible and the entry is copied to to-
space. The forwarding address replaces the virtual address of the object header in the
to-space copy.

2. It is the address of the descriptor cell for an object header that contains a valid
descriptor. That object is no longer accessible and the entry is not copied.

After the AOM has been rebuilt in to-space, atomic garbage collection continues in the

usual way by writing all dirty pages of to-space to the backing store. This insures that the

rebuilt AOM is in a consistent state on the backing store for to-space.

This algorithm rebuilds the AOM in a way that improves locality of reference for subse-

quent operations. Entries in one linked list are copied to the same page of virtual memory

with high probability.

76

• -' -,, * .' .d . - * .j . .' .. _ .'.... ~ .*% ' '.. S . *_.*, '* . . -

y~if.

5.3.3 Recovering the AOM

During recovery, the AOM must be recovered to a consistent state before processing of

the log can begin. It can be returned to the state it was in at the time of the last checkpoint.

Any insertion since the last checkpoint was for an object that became newly accessible since

the last checkpoint. Such an object must have a base-committed or mutex record in the

portion of the log written since the last checkpoint. Its entry can be reinserted during the

processing of the log.

Recall that the highest virtual address in use at the time of the last checkpoint is -- 4

recorded in the checkpoint object. Any entry in the AOM that was inserted in the AOM

since the last checkpoint will be at a higher virtual address. To return the AOM to its

state at the time of the checkpoint, the linked list in each bucket is traversed. If the pointer 4-

to the next entry in a list has an address greater than the highest virtual address at the

time of the checkpoint, that pointer is replaced by nil to cut off the part of the list inserted

since the checkpoint. As each entry is traversed, the object state associated with it is set

to not-recovered.

The AOM will be recovered correctly even if a crash occurs in the middle of recovery.

New entries are always inserted at the end of the linked lists; thus, the initial portion of the

linked lists at the time of the last checkpoint survives a crash. Object states do not have

to survive a crash; they are always reset to not-recovered at the beginning of recovery.

After the AOM has been recovered, the log can be processed. During the processing of '

the log, the AOM is used in place of the OT and to find resilient objects in virtual memory.

5.3.4 Recovery of Mutexes :".

The AOM allows more flexibility in the choice of recovery schemes for mutex objects.

The recovery scheme presented for mutex in the last chapter required that two versions of

the mutex be kept in virtual memory. Using the AOM, only a current version and enough

information to recover a base version need to be kept in virtual memory.

The new representation used for mutex objects is similar to the representation presented 'A

in the previous chapter. However, instead of a base version, information about the last %

version written to the log is kept. That information includes the log address of that version

77
°,''

P0

4,'+ % '. - .
'

. .". - . '. ",, -,. ..--4 . .-

7 xm'%

and a list of the virtual addresses of the object headers for the resilient objects contained in

that version. The log address allows mutex versions to be recovered without having to scan

the whole log '. The list of contained objects is necessary because of garbage collection. It

prevents resilient objects that are accessible from the logged version, but no other object in

virtual memory, from being treated as garbage and removed from virtual memory and the

AOM.

To ensure consistency between virtual memory and the log, a mutex header cannot be

updated with a new log address and a list of contained objects until the corresponding mutex

record is in the log. Thus, logging an accessible mutex object and updating its header is a %

two step process during prepare for an action that called changed.

In the first step, the mutex is logged. While the mutex is seized,

e Construct a list of resilient objects contained in the current version. Remember the
pointer to the list.

o Construct a mutex record from its current version and write it to the log. Remember
'3 the log address of the record.

After the prepared record for the action has been forced to the log, the mutex record is

physically in the log and the mutex header can be updated in the second step.

o Compare the remembered log address with the log address in the header. If it is
greater, install it and the remembered pointer to the list of contained objects in the

mutex header. This comparison is necessary because two actions could write mutex
records for the same mutex in one order, but write their prepared records in the 0:7

opposite order.

The log and the backing store must be kept consistent at a checkpoint. At a checkpoint,

the second step outlined above is performed for any mutex for which the first step has been

carried out. This takes place after the log has been forced, but before the checkpoint object

is installed. Forcing the log during a checkpoint ensures that the mutex record is in the log.

After a crash, the mutexes for which a mutex record was written to the log since the

last checkpoint are recovered while the log is scanned. All three components of the header

are recovered - log address, list of contained objects and current version. There are two .''

choices for recovering the remaining mutexes. They can be recovered when the stable state

'2 The inclusion of the log address in the header also all,w the rriginal Argus re, very w*nlm:,t1,9 ri
mutex to be implemented. lowever, recovery is described using the semarit ic. 9 iss , fr Il,. i ,, ..

o °-°°" - - ". . ..- ° - - - -


~~~PN WW V VIWV-ki VI- V" w w V IV 1W71A' I ' - - - ~ \ ~ N P B' W P~

1%

is traversed to repair object headers or they can be recovered the first time that they are

seized after the crash. In both cases the log address in mutex header is used to find them in

the log. Note, that the checkpoint guarantees that these log addresses are on the backing

store.

5.3.5 Comparison With First Solution

The main advantages of the scheme using the AOM with respect to the scheme presented

in the previous chapter are that less storage is required for mutexes and that two-phase com-

mit is faster because less information needs to be written to the log. The main disadvantage

is the extra expense incurred during garbage collection to rebuild the AOM. The difference

in storage requirements is not large, as will be shown below. More effective schemes for

saving storage devoted to mutex versions are presented in chapter 6. It is hard to compare

the overhead for garbage collection and two-phase commit, but it is likely that the extra

overhead for garbage collection is the greater expense.

Using the first scheme for recovery, two mutex versions must be kept in virtual memory

for each mutex accessible from the stable variables. The scheme using the AOM only needs

to maintain one full mutex version in virtual memory plus a list of resilient objects accessible

from the last logged version. However, this is not always as big a savings as one might hope

Mutex objects are usually used to implement user defined types In most cases when

a mutex is used to implement a user defined atomic type, it will contain as its largest

component a mutable collection of built-in atomic objects The built-in atomic objects

are required to allow the implementation to find out about the cornmmts and aborts .if the

actions that use it A typical example is the implementation of the se2C-qiiw t p, 2f'.

each item on the queue is kept in an atomic variant to keep tra( k f the stat 'i, zf he a, .

that enqueued or dequeued it The storage required to hid a rwitate ,,. in. J ,

atomic objects is comparable t,) the strage r liirvl t. heb i , I .rt" j ' '

objects

Tpi h st it ; Ii i g r'to it r g r IT 1 0 ' , ~

a .

.- o

5-.. . .. • .. 2 . . .. ~ .. - . . 5 -. ' " " " " t



to .0

that contain no resilient objects.

Using the AOM scheme, log records will be shorter because virtual addresses do not

have to be recorded in them. The biggest savings is for a data record for a resilient object

containing a collection of other resilient objects; it would be close to half the size. The 0 Id

savings for a prepared record for an action that modified two objects would be about twenty

percent. The size of aborted, committe, committing and done records would not change.

Shorter records mean less time spent writing records to the log and possibly a lower latency "..-

for two-phase commit. For an Argus implementation to be successful it is important that

two-phase commit be fast. S

Hlowever, the time savings for shorter records is probably not significant. Note that the

tune to compose log records will be about the same; when constructing a data record, the

dominant cost In construction is reading the headers of contained objects in virtual memory

to find out whether they are resilient. Also, the time saved actually writing to the log is

sITIall When writIng to a disk, the rotational latency and seek time are very large compared

the tire t,, transfer the data Because the log is sequential, in both the first scheme and

he V, )l s' hruf' the same delays due to latency and seek times will be incurred.

1,age, ,. tjr, is inire expensive using the AOM. All of the entries in the AOM

, ' i ,a',#., at e%,er\ garfage (olection whether or not the corresponding objects

, t r i f d iri. r the, arfa e, ,Ilection The first schetne amortizes the updating

.; ,,r -If,' r,, -, , ardian It w rites . *I), virtual address of object -

V , t q! r, rd,] are ritt t ()TdV pairs for resilient objects that

. . . '., ,, , that h iv,, 1,,,i iiiodified need to be written to

e r,.ir ir; ir I to tdi .!':nrtg garbage collection. Thus, an

. -- .. , , r,., t I;,t .p cessing thro ighput at a guardian.

C ,i !,v f .. V , t hr tisi" reasi, it is preferable to

- C, , ; O'. . 1 V t , If ;4n incre tintal

. . . ..- . . . . .-. _ o . . o-. .°o . -. . . ° . . . . . °. . .. 4°°



5.4 Garbage Collection

The atomic garbage collector presented in chapter 3 traded time for s,,-Ice It, creased

the garbage collection time for stable objects to avoid allocating an extra cell in all , hject

to hold a forwarding pointer. This section presents a scheme for garbage collection that In

creases storage requirements, but runs faster. This second scheme might be preferable to the

first scheme. However, the first scheme might be more easily adapted to garbage collection

for large address spaces. Recovery for large address spaces is discussed in chapter 6

In this second scheme, any garbage collection algorithm can be used. Before garbage

collection commences, a new backing store is acquired on disk. During garbage -ollecti(n.

the first time a page fault occurs for a page of virtual memory, the page is read from the old

backing store. However, when dirty pages of main memory are paged out, they are written %

to the new backing store. When garbage collection completes, a checkpoint is taken uing

the new backing store and the new backing store replaces the old backing store. If a crash

occurs before garbage collection completes, the new backing store is discarded and recovery

proceeds using the old backing store.

It is not clear which way of doing atomic garbage collection is best. The original method

increased the time overhead for garbage collection, but only for the stable objects. The new

method requires double the disk storage while garbage collection is in progress. This increase

in storage depends on the size of the heap and not the number of stable objects. However,

-. the increased need for disk storage is only temporary and not all guardians at a node need

-. to garbage collect at once. If guardians do not garbage collect often, the extra disk space

can be amortized over all the guardians at a single node.

81

N !

SRV
A,% %



"%0

Chapter 6

Conclusions

This thesis ham presented a new, faster recovery method for Arli Th r'T'e e t ti ,,,

is applicable to other systems similar to Argus systems that is. Wti,,ns t(, rt .iate

resilient data in a garbage-collected heap in virtual memory

Virtual memory consists of a volatile component in main memory and i ,,n- ite ..

component on disk used as a backing store The new recovery method i tirigljif em ,et0ee.

crashes in which both the main memory and the backing store are corr, pted, 4ri it.,l"

in which only the main memory is corrupted The former are called (hart, r.hei the ftter

soft crashes. Soft crashes are much more frequent than hard crashes The new nethod

provides fast recovery for soft crashes.

Recovery reconstructs the stable state of an Argus guardian in virtual inremory by u1sing

the surviving backing store and reading just enough of a log on stable storage to ret:over

information lost from the volatile main memory. Checkpoints, during which all the dirty

pages of main memory are written to the backing store, reduce the amount of log that has

to be read after a crash. Checkpoints are cheap and several optimizations for making them

even cheaper have been suggested.

The low organization used for stable storage is based on the log used by the current

recovery system[21,22]. However, an improved method for reclaiming stable storage used

by the log has been presented. That method is based on the idea of using two log segments Z.. V

on stable storage to implement a log. The first log segment contains the last snapshot of

the stable state. The second log segment contains records written to the log since the last

snapshot commenced. 
-

82

% %%

"% % * % % * ' "% " -' % "" , % % " - .- ..- - - .- -. . % ".' . .
.

. . -. 0 ... . . ' ,' * €' .... 4 e ,, .- < . . - , " . ., ",. ,- ,., • .. .,. -,. .. = ... ,- -.- . ,%%



4 r it e, i ri 1 reo -i t w I r -,I erleru f, r ret ove ry U-i rig virtualI rieiiiry B~e( ause

*. . 'v' i-rIN Kmrhoitge. , -let t iii oA firri I i he'ap i ii irit i ril m iritry is imIipei'ted1 fhe -

"t~ ~ ~~i fI 1 -4 - 11K-1 4After is rash Vfiivigh rifuryt,rfT rIt'MSt he AV4ilable afte~r

'k ri-d ije. Ir , fi1,he %ti rv I virig hu k i rg -4t tre Two t 4iiltit)ri to thIii p r( I i n have o

f I en, ci I ie- 1,refoo-rro-d 5,hitwii *ritesi 4n ifl refliitntal dhijef f inap hi) the 1(,g In

ti'" -i 1! 1, it e referent~ e to 4 r.-milent 4 r .I t'i t he r1II) M u iaI'm thfe Iirtiual a;lrires. ()f

t". 1 4, 1 e r A 4;t *-rfi a I %e uoIi ilt ,i Ii i ri a intit I n aitn t Ij et ni %) i v Ir t 'Il ja I rienrirv

I .- ~.-r vii t i fli 1. tilie pomi t-stity If 4 1 rar'rh 'hirig K;1lrhg ' Ild], ti, to T wo ) litiiis

Fa T, I-'v f i r Is-i lie-n i e finmt 1-4 n 4ti~tni:4 y;trttgf' litila algorit hit

N 11-Ki VirgiitVt l.et I on)r JII. ie .cviiilli ~ t in is an ;AttnI gitrtige ciillectr

i, t * rievol hliv k1ing airo. 'iring garhag. (Ile( tilln The se(,rid sduio(n is faster, but

I re~piinvat.re itik -itriragr

Phe rempnirider of t his rhapter im dlevoJted to a discuijsin of chianges to A rg'ns asmumed byS.%

i hitti theia- harigen that wrould redure the tstorage requirements for rnnnexes, a comnparison

Jrev overy osing v irtujal tnennory with the current recovery systern, and a presentation of

ideam Cr ir fiuture work

*6.1 Changes to Argus

This thesis assume~d two changes to the Argus programming language. The first change

restricts the types of the stable variables. The second change simplifies the recovery seman-

* tics for mnutexes This section discusses these changes and two other changes that could

reduce the storage required for mutex versions.

6.1.1 Resilient Objects

This thesis restricts the type of a stable variable to a type that can be guaranteed i
to be resilient by static type checking. The restriction Is necessary because non-resilient

objects are not recovered after a crash. If a non-resilient object became accessible and were

* subsequently modified, recovery using virtual memory could not ensure the consistency of A

the object in the recovered heap. Furthermore, the object could contain a pointer to another ov.

object that would no longer exist after recovery. Thus, the recovered heap could be broken.

83



The Argus reference manual proposes a guideline for programs similar to this restric-

tion[17], but the guideline is less restrictive because it does not have to be enforced. The -.

manual's guideline allows the stable variables to be of any type that could be resilient. One

kind of resilient object allowed by the manual's guideline is a mutable object that is not

modified after it becomes accessible from the stable variables. This includes normally mu-

table and non-resilient objects such as arrays and records. Recovery using virtual memory

could allow these objects to be accessible only if it were possible to guarantee that they ."

would not be modified after becoming accessible. Run time enforcement of the guarantee

is too expensive.

Note that the restriction assumed in this thesis does not deny a programmer computa-

tional power; a non-resilient object can be made resilient by surrounding it with a mutex.

The issue is efficiency. A program uses a mutable representation for an immutable type

for efficiency reasons. It is convenient to use mutation to create an object of the type even

though the object will not be mutated by subsequent operations. In the short term, the

best way to circumvent the restriction is to surround these kinds of mutable objects by a

mutex or to copy them to immutable objects before they are made accessible. A long term

solution might be to investigate methods for a compiler to detect that an immutable type

is being implemented using a mutable representation.

6.1.2 Mutexes

The all or none recovery property for mutexes requires that if changed is called by an

action for several mutexes at a single guardian, either all of the mutex versions written I
to stable storage on behalf of that action will be recovered after a crash or none of them

will. In practice it is difficult to make use of the property and it has not yet been used in

Argus programs. Dropping this property from the language simplifies recovery for mutexes.

Dropping the property also allows two optimizations that decrease the storage used for

extra mutex versions, provided additional restrictions are made:

1. If it can be guaranteed that the contents of a mutex is accessed only while it is seized,
and that no non-resilient object contained in it is shared, then the extra version is

needed in virtual memory only if the mutex has been seized since the last time that

an action that called changed prepared. The restriction required for this optimization
is one that is already recommended by the Argus reference manuaV171 as a proper

84

. ,,.,.. .......-. ._._ ;. - .. .. ... . .,.. . .. , .. . .. .. . . ... ... .. ,. ... ,.. .... . .... ,. o ..
P . . ..



programming practice. Mutual exclusion would be violated if the contents of a mutex
were accessible outside of a seize, or if objects accessible from a mutex were shared
with other objects.

2. It is usually the case that an object's representation is read more often than it is
modified. Suppose that in addition to the restriction assumed above, it were possible
to differentiate between seizing a mutex for reading and seizing a mutex for writing
Then the extra version is needed in virtual memory only if the mutex has been seized
for writing since the last time that an action that called changed prepared

Enforcing the restrictions necessary for the optimizations might require static and dy-

namic checking and/or changes to the Argus programming language This is a topic for

further research.

6.2 Comparison With Current Recovery System

In comparing recovery using virtual memory with recovery using the log (the current

Argus recovery system) there are three factors that need to be considered: the speed of

recovery, the resources required by the recovery system during normal execution, and the

robustness of the recovery system.

Recovery is much faster using virtual memory than it is using only the log. The work

to be done in the case of recovery using virtual memory consists of two parts:

1. Process the part of the log written since the last checkpoint.

2. Traverse the stable state to restore object headers.

The work to be done in the case of the recovery using the log also consists of two parts: .r

1. Process the part of the log written since the last snapshot.

2. Process the snapshot in the log.

In both cases the time for the second step depends on the size of the stable state. Also

the time required for second step is usually small compared to the time required for the

first step. Thus, the relative speed of recovery for the two schemes depends on the relative

frequency of snapshots in the current system versus checkpoints in recovery using virtual

memory.

Checkpoints can be taken much more frequently than snapshots; therefore recovery

using virtual memory is a lot faster than recovery using the log. Checkpoints can be taken

85

J" , ' % - " 5 *5 -.. P5 d, , . % % . . . . . . . . " -.. .- •% " . ,% % .%.% "., % , .% .- % % % • " ,% " % % % ".. % . - ' . .- .. . .- -. ,



more frequently than snapshots bec acis t hey are he'aller 8 Iwo J'' TI i. r, i i r- %I

dirty pages of physical memory that ( ont ain ri st al~ Ijec s t ,% r it tenI, hsi ii v r'

whereas a sinapshot requiiresi t hat the stable -itate ber t r;%, erqiel mr I r t et; 1, v

that, traversing the stable -ttate also requires4 1),kkerpiriR : iar .m ~.oork

been ( ()pied Thus, tniajpsh; ot - require urioclcfiati''ci t, of h - f I. he'i

Faster reco(very is riot frev Re toer'ic iii virtu~i cii IttE-I rt r, ,.r- '

A guiardlian is uap anid rtitiimi tkv tc l w- t he i Ictict r4", 4.r~~'r . .

in virtual mienicry for fitiatex %er~i(iin- acid KarbagE 11- f.rc I o r,' o~*-

The extra sto-rage ( ()St df-penids "~n the Sile 4411f heldr 'tt.Ie t. I ''

are required only for a(-( essible ilcitexes4 Seoveral -,h-'ncu.s f, r t h, r,' I I Ti 1

% ~requi remaents for ntitexes were presenitedl in the t hesim These %(herrce dv-ET r -,!i t i ,

the ue of inutexes in pro gramls If practic al met hEt )d% f, or 0 11( f r( 'i it x iE EoAvr t r I t~ i - it1 o

found, the extra storage needed for mutexes will be smiall

*The ex tra costs for garbage ccd lecr t ic )n depend ,on t hie alg. -ri I bil iiEi lfh rvit It, , I-

for garbage collection were presented turning a ( rash during garhagE' ooliE tit int- a h;ird

crash, atomric garbage rollecticin cusing a new hat king 0icre, And itII;tOrkc ,11f, t t,,I

* based on copying

-The first two miethodls take the sanie arniinit ccf timte B4,O b 'c# ario, gvcrhigc- -1io hA il

*algorithm followed by a checkpoint Assuming that heaps are srirall vtiiicgb to ij~ -tc

the world" garbage collect ion and that the proportion cof timne speit, garbagv ( ollect ig is

* small, atomic garbage collection using a new backing store is preferable toc tudrninig a crash

during garbage collection into a hard crash. The extra disk storage requiiredi diuring garbcage

collecting is a smnall price to pay for fast recovery.

The choice between the last two methods depends on the arioi unt ()f iicainrn ernory

available to a guardian. Atomic garbage collection using a new backing store is best whenI

most of a guardian's heap fits into main memory. The only cost it adds over nIorinal garbage

collection is the cost of the checkpoint. Atomic garbage collection based on copying garbage

collection saves space but increases the time. The extra time is proportional to the size of

4the stable state. This method is preferable for a guardian whose heap does not fit into mainq

memory. In that case the extra I/0 time required to page the heap will dwarf the extra

86

'. or 0 Pr ,

% % % % %0
*L 6-A -*



40

de e ri h th e lita rdt r ~~v hf k- th j uhr, ' by it di ~

t i eai e ki t l i onsi-itriyr if th re i.vere r(ibjt it j~ K rap attleen.'v r. %f

it rae %. toiu er %~itabl ia t lre i o l~j- headert If at in o s*ie is foun du K t .

aP.

rImplemening te rr ytern utlie in thi giat hesig wol requi.re extensive changes

to UNX or the implmen at r.o anI operig sysite I kene tilo.redi to Aris Th e

signu ofl an Arhe' kewrel has aed e n cr nsidered fo oteleaosiriaiy eas

the teha or ier -gat i an comh muiationh thn UNIX i t hig. A primnr clK'g

A ~ ta maj re.ra hopo e ttaa t o f the a co t oregarbae grllctih listh a ssi cateid.~ chieck-

hoin. lthoug ~he c heckint a are int epsiverwen copa red a w t h snso , th are no.r ht

ithteapea the cmarbed wth tim reoar gabage colheadrtifn and whe t haite'r y frequency df grbghe

'UNer~I ris vr at trade gr of Brell a emaoris aotd ltta ae h rs i etda

VAX is a trademathrko er iiyltupent orplinadin ti hsswudrqieetniecai

to8 UNXPrteipeetto fa prtn ytmkre alrdt ru h e

-0 -r Of r-
Nign of an Ar% enlhsaraybe osdrdfrohrraos mrl eas

a.. the overhead o~~r ine-uada comncto nUI1stohih: rlmnr eina



%

times a ilinute The frequen-v, of (heckpoints r old be reluced u +e e fI) o,(ICIIng (he-kpoi nt,

from garbage coll,. tion ( )ne approach would be to diide the heap, in twi< a ,tahie part

and a *olatile part The volatile part could be garbage.<collected frequent] mniirig nrmal

methods Atomic garbage collection could be used less often and oni . t(, r,.e aim st orage

from the stable part

Rec'overy using virtual memory could be extended to work for large .irt uial address

spaces When recovering a large address space. traversing the whole stable 4tate to restore

,,hject headers is too slow Hy a .ciating crash counts with obect headers. object head-

Pre An be restored after a crah a they are accessed d:ring normal pr, e.,ing (;a rhage

collection is the major problem for large address space, an incremental garbage collector

that is atomic would have tii be developed It would have to be incremental because the

delays experienced during "stop the world" garbage collection would no longer be accept-

able It would have to be atomic since incremental garbage collection would constantly be

in progress

The popular approach to incremental garbage collection in to divide the address space

into regions that are collected independently using copying garbage collection'3,20,15, An

atomic incremental garbage collector could use an algorithm for copying similar to the

one developed in this thesis Objects are allocated to the regions according to their age.

Researchers have found that younger (recently allocated) objects are more likely to be %

collected as garbage than older objects and have concluded that "young" regions should be

collected more often than "old" regions 20,15,251. In addition to segregating object by age,

an atomic garbage collector might designate some regions to be stable and some volatile as

discussed above.

Keeping track of inter-region references efficiently is hard when the heap is divided into

regions. The Lisp Machine uses special hardware for this purpose|20]. An atomic garbage

collector would have to use data structures that survive soft crashes to keep track of inter-

region references between stable regions.

Built-in atomic objects are well suited for recovery using virtual memory. The use of

versions in their representation is natural both for them and recovery. Mutex objects are

less suited for recovery. The base versions for mutex objects/find their use only in recovery.

88
P,..:

%" " "N%" P t I I r l- -. Pi ~ " " F lmq ' i r w m ' . s•.", . - . m ' ' '. ." ",• ' "•JK,%. +. ..... j '. . . ...= .',,'.. ' .  + +. . ..... ... .• . . • .. .% -r -P % % Z- ........ .
ks+ r • I . r ll All w . %- % t I % f l t I 

I

I I m I + l



Several changes or restrictions on the use of mutex objects in Argus have been presented

that reduce the storage requirements for mutexes. A way to enforce these restrictions

needs to be found. Other researchers have found deficiencies with mutex for designing user

lefined atomic typeslll] Research into new constructs for building user defined atomic

t) pes should also take recovery into account.

%1

% m

4.

U89

%. % %V



- -.5

rum

Bibliography

[1] L. W. Allen. Design of a Kernel for Argue. Programming Methodology Group
Memo 43, Laboratory for Computer Science, MIT, Cambridge, Ma., June 1985.

[2] G. C. Arens. Recovery of the Swallow Repository. Technical Report MIT/LCS/TR-
252, Laboratory for Computer Science, MIT, Cambridge, Ma., January 1981. 1

[3] H. Baker. List Processing in Real Time on a Serial Computer. Communications of the
ACM, 21(4):280-294, April 1978.

[4] C. J. Cheney. A Nonrecursive List Compacting Algorithm. Communications of the
ACM, 13(11):677-678, November 1970.

[5] J. Cohen. Garbage Collection of Linked Data Structures. Computing Surveys,
13(3):341-367, September 1981.

[6] J. L. Dawson. Improved Effectiveness from a Real Time Lisp Garbage Collector. In
Proceedings 1982 A CM Symposium on Lisp and Functional Programming, pages 159-
167, 1982.

[7] J. L. Eppinger and A. Z. Spector. Virtual Memory Management for Recoverable Objects
in the TABS Prototype. Technical Report CMU-CS-85-163, Department of Computer
Science, Carnegie Mellon University, Pittsburgh, Pa., December 1985.

[8] R. R. Fenichel and J. C. Yochelson. A LISP Garbage-Collector for Virtual-Memory
Systems. Communications of the ACM, 12(11):611-612, November 1969.

[9] J. N. Gray. Notes on Database Operating Systems, pages 393-481. Volume 60 of Lecture 6
Notes in Computer Science, Springer-Verlag, New York, 1978. .--

[10] J. N. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price, F. Putzolu, and
I. Traiger. The Recovery Manager of the System R Database Manager. ACM Com-
puting Surveys, 13(2):223-242, June 1981.

[11] 1. Grief, R. Seliger, and W. Weihl. A Case Study of CES: A Distributed Collaborative

Editing System Implemented in Argus. Programming Methodology Group Memo 55,
Laboratory for Computer Science, MIT, Cambridge, Ma.A April 1987.

[12] D. E. Knuth. Fundamental Algorithms. Volume I of The Art of Computer Program-
ming, Addison-Wesley, Reading, Mass., 1973.

90

%* .. . . . . .

5 '
• .,-.,.-:- -- ,,-_. -:. % --- ,:- -----P:"- -, .f.. --' , ." -. ~.." %,- . -, -.. *-,,-', , , , ¢ . -"-"--.--'.-.'....



4P%' 
o

1131 B. W. Lampson. Atomic Transactions, pages 246-265. Volume 105 of Lecture Notes
in Computer Science, Springer-Verlag, New York, 1981. This is a revised version)
of Lampson and Sturgis's unpublished Crash Recovery in a Distributed Data Storage
System.

1141 B. W. Lampson and H. E. Sturgis. Crash Recovery in a Distributed Data Storage
System. 1976. version of paper that was not published.

[151 H. Lieberman and C. Hewitt. A Real-Time Garbage Collector Based on the Lifetimes
of Objects. Communications of the ACM, 26(6):419-429, June 1983.

[16] B. Liskov. Overview of the Argus Language and System. Programming Methodology
Group Memo 40, Laboratory for Computer Science, MIT Cambridge, Ma., February
1984.

[17] B. Liskov, M. Day, M. Herlihy, P. Johnson, G. Leavens, R. Scheifler, and W. Weihl.
Argus Reference Manual. Programming Methodology Group Memo 54, Laboratory for
Computer Science, MIT, Cambridge, Ma., March 1987. %

[18] B. Liskov, P. Johnson, and R. Scheifler. Implementation of Argus. 1987. in prepara-
tion. . .

[19] M. L. Minsky. A LISP Garbage Collector Algorithm Using Serial Secondary Storage. ...

Al Memo 58, MIT Al Lab., October 1963.

[20] D. Moon. Garbage Collection in a Large Lisp System. In Proc. of the 1984 Symposium
on Lisp and Functional Programming, pages 235-246, 1984. ..

[21] B. Oki. Reliable Object Storage to Support Atomic Actions. Technical Re-
port MIT/LCS/TR-308, Laboratory for Computer Science, MIT, Cambridge, Ma., ,'%

May 1983.

[22] B. Oki, B. Liskov, and R. Scheifler. Reliable Object Storage to Support Atomic Actions.
In Proceedings of the Tenth Symposium on Operating Systems Principles, pages 147-
159, December 1985.

[23] P. M. Schwarz. Transactions on Typed Objects. PhD thesis, Carnegie-Mellon Univer- ."

sity, December 1985. Available as Technical Report CMU-CS-84-166.

[24] A. Z. Spector, D. Daniels, D. Duchamp, J. L. Eppinger, and R. Pausch. Distributed
Transactions for Reliable Systems. In Proceedings of the Tenth Symposium on Operat-
ing Systems Principles, pages 127-146, December 1985.

[25] D. Ungar. Generation Scavenging: A Non-disruptive High Performance Storage Recla-
mation Algorithm. In ACM SIGSOFT/SIGPLAN Practical Programming Environ-
ments Conference, pages 157-167, April 1984.

[26] W. Weihl and B. Liskov. Implementation of Resilient, Atomic Data Types. ACM .
Transactions on Programming Languages and Systems, 7(2):244-269, April 1985.

91 ,.¢

,'% -- %
k''%.a a 

"
% "S'' - ' " -, % "." " - --- " ,"." % -. ",#-"-"."-"-"." . . , . . "' ""V . "'"" ,_- """'' .''



* OFFICIAL DISTRI 7. 1;' -

* Director
Information Processina Techniques Offi c e -
Defense Advanced Research Projects Aic.-
1400 Wilson Boulevard
Axlinaton, VA 22209

Office of Naval Research
800 North Quincy Street
Arlinaton, VA 22217
Attn: Dr. R. Grafton, Code 43.

Director, Code 2627 -
Naval Research Laboratory
Washiniton, DC 3 --7

Defense Technical Infrmatin Center
Cameron Station
Alexandria, VA 221 A

National Science Foundation ,
Office of Comoutin.- Activities
l6O0 G. Street, N.,.
ashinaton, DC 20550

Attn. Prograr Director

Dr. E.B. Royce, Code 38 Copy
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

Dr. G. Hopper, USNR 2 Copy
NAVDAC-OOH
Department of the Navy
Washinaton, DC 20374

NI % %1

% %



AI

E.

~ Z.~*?>~ % 2W- * -. '*-..**,~-,**,-*,.- ****-*%***


